期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于自引导进化策略的高效自动化数据增强算法 被引量:1
1
作者 朱光辉 陈文忠 +2 位作者 朱振南 袁春风 黄宜华 《软件学报》 EI CSCD 北大核心 2024年第6期3013-3035,共23页
深度学习在图像、文本、语音等媒体数据的分析任务上取得了优异的性能.数据增强可以非常有效地提升训练数据的规模以及多样性,从而提高模型的泛化性.但是,对于给定数据集,设计优异的数据增强策略大量依赖专家经验和领域知识,而且需要反... 深度学习在图像、文本、语音等媒体数据的分析任务上取得了优异的性能.数据增强可以非常有效地提升训练数据的规模以及多样性,从而提高模型的泛化性.但是,对于给定数据集,设计优异的数据增强策略大量依赖专家经验和领域知识,而且需要反复尝试,费时费力.近年来,自动化数据增强通过机器自动设计数据增强策略,已引起了学界和业界的广泛关注.为了解决现有自动化数据增强算法尚无法在预测准确率和搜索效率之间取得良好平衡的问题,提出一种基于自引导进化策略的自动化数据增强算法SGES AA.首先,设计一种有效的数据增强策略连续化向量表示方法,并将自动化数据增强问题转换为连续化策略向量的搜索问题.其次,提出一种基于自引导进化策略的策略向量搜索方法,通过引入历史估计梯度信息指导探索点的采样与更新,在能够有效避免陷入局部最优解的同时,可提升搜索过程的收敛速度.在图像、文本以及语音数据集上的大量实验结果表明,所提算法在不显著增加搜索耗时的情况下,预测准确率优于或者匹配目前最优的自动化数据增强方法. 展开更多
关键词 深度学习 数据增强 自动化机器学习 自引导进化策略
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部