This paper presents the solution of regulating the wind rate automatically by means of fuzzy control technology and implementing it with PLC (programmable logical controller) under the circumstance of many influence f...This paper presents the solution of regulating the wind rate automatically by means of fuzzy control technology and implementing it with PLC (programmable logical controller) under the circumstance of many influence factors, which exists in the axial flow fans wind rate regulation system during the process of mine ventilation, and has difficulty in modifying the mathematic model to obtain the satisfied result by normal control ways. According to this analysis, the intelligent and analytic treatment of fuzzy controller has been made and fuzzy control scheme involving self regulation divisor and intelligent integral has been deeply proposed. Test result shows that this system based on the scheme above is obviously prior to others in its responsibility such as high speed, overshoot, control precision and robustness. The system furnishes the great reliability of mine working safety and fans running efficiency.展开更多
Adopting the strategy of fuzzy control with self tuning factor within whole universe of discourse, a kind of fuzzy control method for jigger discharging is put forward. This method has many advantages over the convent...Adopting the strategy of fuzzy control with self tuning factor within whole universe of discourse, a kind of fuzzy control method for jigger discharging is put forward. This method has many advantages over the conventional PID controller in terms of response speed, stability and robustness. It is effective to restrain the jig bed from over thick or empty, and the stability of the bed is markedly improved. The good results are obtained in factory tests.展开更多
Hematopoiesis provides a suitable model for understanding adult stem cells and their niche. Hematopoietic stem cells(HSCs) continuously produce blood cells through orchestrated proliferation, self-renewal, and differe...Hematopoiesis provides a suitable model for understanding adult stem cells and their niche. Hematopoietic stem cells(HSCs) continuously produce blood cells through orchestrated proliferation, self-renewal, and differentiation in the bone marrow(BM). Within the BM exists a highly organized microenvironment termed "niche" where stem cells reside and are maintained. HSC niche is the first evidence that a microenvironment contributes to protecting stem cell integrity and functionality in mammals. Although multiple models exist, recent progress has principally elucidated the cellular complexity of the HSC niche that maintains and regulates HSCs in BM. Here we introduce the development and summarize the achievements of HSC niche studies.展开更多
Embryonic stem cells (ESCs) can undergo unlimited self-renewal and maintain pluripotency to differen- tiate into any cell type of the three germ layers. Extensive studies have shown ESC identity is regulated by tran...Embryonic stem cells (ESCs) can undergo unlimited self-renewal and maintain pluripotency to differen- tiate into any cell type of the three germ layers. Extensive studies have shown ESC identity is regulated by transcription factors, epigenetic regulators and multiple signal transduction pathways. However, the kinase regulation of pluripotency is not well understood. Here we show that the serine/threonine kinase PlM2, which is highly expressed in ESCs but not in somatic cells, functions as a crucial stemness regulator in ESCs. Knockout of Pim2 inhibits the self-renewal and differentiation capability of ESCs. Mechanistic studies identified that PIM2 can directly phosphorylate 4E-BP1, leading to release of elF4E which facili- tates the translation of pluripotent genes in ESCs. Our study highlights a novel kinase cascade pathway for ESC identity maintenance.展开更多
文摘This paper presents the solution of regulating the wind rate automatically by means of fuzzy control technology and implementing it with PLC (programmable logical controller) under the circumstance of many influence factors, which exists in the axial flow fans wind rate regulation system during the process of mine ventilation, and has difficulty in modifying the mathematic model to obtain the satisfied result by normal control ways. According to this analysis, the intelligent and analytic treatment of fuzzy controller has been made and fuzzy control scheme involving self regulation divisor and intelligent integral has been deeply proposed. Test result shows that this system based on the scheme above is obviously prior to others in its responsibility such as high speed, overshoot, control precision and robustness. The system furnishes the great reliability of mine working safety and fans running efficiency.
文摘Adopting the strategy of fuzzy control with self tuning factor within whole universe of discourse, a kind of fuzzy control method for jigger discharging is put forward. This method has many advantages over the conventional PID controller in terms of response speed, stability and robustness. It is effective to restrain the jig bed from over thick or empty, and the stability of the bed is markedly improved. The good results are obtained in factory tests.
文摘Hematopoiesis provides a suitable model for understanding adult stem cells and their niche. Hematopoietic stem cells(HSCs) continuously produce blood cells through orchestrated proliferation, self-renewal, and differentiation in the bone marrow(BM). Within the BM exists a highly organized microenvironment termed "niche" where stem cells reside and are maintained. HSC niche is the first evidence that a microenvironment contributes to protecting stem cell integrity and functionality in mammals. Although multiple models exist, recent progress has principally elucidated the cellular complexity of the HSC niche that maintains and regulates HSCs in BM. Here we introduce the development and summarize the achievements of HSC niche studies.
基金supported by the National Basic Research Program of China (2013CB966901)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA01040108)The National Thousand of Talents Program to T.Z., and the National Natural Science Foundation of China (31570995, 31621004) to T.Z. and (31400831) to J.C.
文摘Embryonic stem cells (ESCs) can undergo unlimited self-renewal and maintain pluripotency to differen- tiate into any cell type of the three germ layers. Extensive studies have shown ESC identity is regulated by transcription factors, epigenetic regulators and multiple signal transduction pathways. However, the kinase regulation of pluripotency is not well understood. Here we show that the serine/threonine kinase PlM2, which is highly expressed in ESCs but not in somatic cells, functions as a crucial stemness regulator in ESCs. Knockout of Pim2 inhibits the self-renewal and differentiation capability of ESCs. Mechanistic studies identified that PIM2 can directly phosphorylate 4E-BP1, leading to release of elF4E which facili- tates the translation of pluripotent genes in ESCs. Our study highlights a novel kinase cascade pathway for ESC identity maintenance.