A mode for the periodicity and weakening surge in semi-insulating GaAs photoconductive semiconductor switches is proposed based on the transferred-electron effect. It is shown that the periodicity and weakening surge ...A mode for the periodicity and weakening surge in semi-insulating GaAs photoconductive semiconductor switches is proposed based on the transferred-electron effect. It is shown that the periodicity and weakening surge is caused by the interaction between the self-excitation of the resonant circuit and transferred electron oscillation of the switch. The bias electric field (larger than Gunn threshold) across the switch is modulated by the AC elec-tric field,when the instantaneous bias electric field E is swinging below Gunn electric field threshold ET but grea-ter than the sustaining field Es (the minimum electric field required to support the domain) at the time of the do-main reaching the anode, and then the delayed-dipole domain mode of switch is obtained. It is the photon-activated carriers that satisfy the requirement of charge domain formation on carrier concentration and device length prod-uct of 10^12 cm^-2,and the semi-insulating GaAs photoconductive semiconductor switch is essentially a type of pho-ton-activated charge domain device.展开更多
Based on Hamilton principle,the governing differential equations and the corresponding boundary conditions of steel-concrete composite box girder with consideration of the shear lag effect meeting self equilibrated st...Based on Hamilton principle,the governing differential equations and the corresponding boundary conditions of steel-concrete composite box girder with consideration of the shear lag effect meeting self equilibrated stress,shear deformation,slip,as well as rotational inertia were induced.Therefore,natural frequency equations were obtained for the boundary types,such as simple support,cantilever,continuous girder and fixed support at two ends.The ANSYS finite element solutions were compared with the analytical solutions by calculation examples and the validity of the proposed approach was verified,which also shows the correctness of longitudinal warping displacement functions.Some meaningful conclusions for engineering design were obtained.The decrease extent of each order natural frequency of the steel-concrete composite box-girder is great under action of the shear lag effect.The shear-lag effect of steel-concrete composite box girder increases when frequency order rises,and increases while span-width ratio decreases.The proposed approach provides theoretical basis for further research of free vibration characteristics of steel-concrete composite box-girder.展开更多
The compound {[Cu(Hpht)(N_3)]·H_2O}_n (Hpht = hydrogen phthalate) is formedby chains of copper atoms bridged simultaneously by syn-syn carboxylato and end-on azido bridges.Taking into account the large Cu-O(1)-C(...The compound {[Cu(Hpht)(N_3)]·H_2O}_n (Hpht = hydrogen phthalate) is formedby chains of copper atoms bridged simultaneously by syn-syn carboxylato and end-on azido bridges.Taking into account the large Cu-O(1)-C(7) bond angle of the single carboxylato bridge (131°), orthe large Cu-N(11)-Cu bond angle of the azido bridge (111.9°), a moderately intrachainantiferromagnetic behavior should be expected for the compound. This paper is devoted to examiningthe apparently anomalous intrachain ferromagnetic behavior of {[Cu(Hpht)(N_3)]·H_2O}_n, using firstprinciples within the full potential linearized augmented plane wave (FP-LAPW) method. The totalenergy, the density of states (DOS), and the spin distributions are obtained. The atomic spindistribution has been analyzed as resulting from the interplay of electron delocalization and spinpolarization. The DOS reveals a surprisingly strong exchange interaction between the d type orbitalsof the copper and the π molecular orbitals of the two ligands.展开更多
We investigate the linear and nonlinear transport through a single level quantum dot connected to two ferromagnetic leads in Kondo regime, using the slave-boson mean-field approach for finite on-site Coulomb repulsion...We investigate the linear and nonlinear transport through a single level quantum dot connected to two ferromagnetic leads in Kondo regime, using the slave-boson mean-field approach for finite on-site Coulomb repulsion. We find that for antiparallel alignment of the spin orientations in the leads, a single zero-bias Kondo peak always appears in the voltage-dependent differential conductance with peak height going down to zero as the polarization grows to P = 1.For parallel configuration, with increasing polarization from zero, the Kondo peak descends and greatly widens with the appearance of shoulders, and finally splits into two peaks on both sides of the bias voltage around P ~ 0.7 until disappearing at even larger polarization strength. At any spin orientation angle θ, the linear conductance generally drops with growing polarization strength. For a given finite polarization, the minimum linear conductance always appears at θ = π.展开更多
文摘A mode for the periodicity and weakening surge in semi-insulating GaAs photoconductive semiconductor switches is proposed based on the transferred-electron effect. It is shown that the periodicity and weakening surge is caused by the interaction between the self-excitation of the resonant circuit and transferred electron oscillation of the switch. The bias electric field (larger than Gunn threshold) across the switch is modulated by the AC elec-tric field,when the instantaneous bias electric field E is swinging below Gunn electric field threshold ET but grea-ter than the sustaining field Es (the minimum electric field required to support the domain) at the time of the do-main reaching the anode, and then the delayed-dipole domain mode of switch is obtained. It is the photon-activated carriers that satisfy the requirement of charge domain formation on carrier concentration and device length prod-uct of 10^12 cm^-2,and the semi-insulating GaAs photoconductive semiconductor switch is essentially a type of pho-ton-activated charge domain device.
基金Projects(51078355,50938008)supported by the National Natural Science Foundation of ChinaProject(094801020)supported by the Academic Scholarship for Doctoral Candidates of the Ministry of Education,China+1 种基金Project(CX2011B093)supported by the Doctoral Candidate Research Innovation Project of Hunan Province,ChinaProject(20117Q008)supported by the Central University Basic Scientific Research Business Expenses Special Fund of China
文摘Based on Hamilton principle,the governing differential equations and the corresponding boundary conditions of steel-concrete composite box girder with consideration of the shear lag effect meeting self equilibrated stress,shear deformation,slip,as well as rotational inertia were induced.Therefore,natural frequency equations were obtained for the boundary types,such as simple support,cantilever,continuous girder and fixed support at two ends.The ANSYS finite element solutions were compared with the analytical solutions by calculation examples and the validity of the proposed approach was verified,which also shows the correctness of longitudinal warping displacement functions.Some meaningful conclusions for engineering design were obtained.The decrease extent of each order natural frequency of the steel-concrete composite box-girder is great under action of the shear lag effect.The shear-lag effect of steel-concrete composite box girder increases when frequency order rises,and increases while span-width ratio decreases.The proposed approach provides theoretical basis for further research of free vibration characteristics of steel-concrete composite box-girder.
文摘The compound {[Cu(Hpht)(N_3)]·H_2O}_n (Hpht = hydrogen phthalate) is formedby chains of copper atoms bridged simultaneously by syn-syn carboxylato and end-on azido bridges.Taking into account the large Cu-O(1)-C(7) bond angle of the single carboxylato bridge (131°), orthe large Cu-N(11)-Cu bond angle of the azido bridge (111.9°), a moderately intrachainantiferromagnetic behavior should be expected for the compound. This paper is devoted to examiningthe apparently anomalous intrachain ferromagnetic behavior of {[Cu(Hpht)(N_3)]·H_2O}_n, using firstprinciples within the full potential linearized augmented plane wave (FP-LAPW) method. The totalenergy, the density of states (DOS), and the spin distributions are obtained. The atomic spindistribution has been analyzed as resulting from the interplay of electron delocalization and spinpolarization. The DOS reveals a surprisingly strong exchange interaction between the d type orbitalsof the copper and the π molecular orbitals of the two ligands.
文摘We investigate the linear and nonlinear transport through a single level quantum dot connected to two ferromagnetic leads in Kondo regime, using the slave-boson mean-field approach for finite on-site Coulomb repulsion. We find that for antiparallel alignment of the spin orientations in the leads, a single zero-bias Kondo peak always appears in the voltage-dependent differential conductance with peak height going down to zero as the polarization grows to P = 1.For parallel configuration, with increasing polarization from zero, the Kondo peak descends and greatly widens with the appearance of shoulders, and finally splits into two peaks on both sides of the bias voltage around P ~ 0.7 until disappearing at even larger polarization strength. At any spin orientation angle θ, the linear conductance generally drops with growing polarization strength. For a given finite polarization, the minimum linear conductance always appears at θ = π.