The modal characteristics of the transverse vibration of an axially moving roller chain coupled with lumped mass were analyzed.The chain system was modeled by using the multi-body dynamics theory and the governing equ...The modal characteristics of the transverse vibration of an axially moving roller chain coupled with lumped mass were analyzed.The chain system was modeled by using the multi-body dynamics theory and the governing equations were derived by means of Lagrange's equations.The effects of the parameters,such as the axially moving velocity of the chain,the tension force,the weight of lumped mass and its time-variable assign position in chain span,on the modal characteristics of transverse vibration for roller chain were investigated.The numerical examples were given.It is found that the natural frequencies and the corresponding mode shapes of the transverse vibration for roller chain coupled with lumped mass change significantly when the variations of above parameters are considered.With the movement of the chain strand,the natural frequencies present a fluctuating phenomenon,which is different from the uniform chain.The higher the order of mode is,the greater the fluctuating magnitude and frequency are.展开更多
Based on electromagnetics and mechanics, electromechanical coupled dynamic equations for the drive were developed. Using method of perturbation, free vibrations of the mechanical system under electric disturbance were...Based on electromagnetics and mechanics, electromechanical coupled dynamic equations for the drive were developed. Using method of perturbation, free vibrations of the mechanical system under electric disturbance were investigated. The forced responses of the mechanical system to mechanical excitation under electric disturbance were also presented. It is known that for the system with electric disturbance, as time grows, beat occurs. When electric disturbing frequency is near to the natural frequencies of the mechanical system or their integer multiple, resonance vibrations occur. The forced responses of the mechanical system to mechanical excitation under electric disturbance are compound vibrations decided by mechanical excitation, electric disturbance and parameters of the system. The coupled resonance vibration caused by electric disturbance and mechanical excitation was discussed as well. The conditions under which above coupled resonance occurs were presented. The results show that when the difference of the excitation frequency and the perturbation frequency is equal to some order of natural frequency, coupled resonance vibrations occur.展开更多
A model of vibrating device coupling two pendulums (VDP) which is highly nonlinear was put forward to conduct vibration analysis. Based on energy analysis, dynamic equations with cubic nonlinearities were established ...A model of vibrating device coupling two pendulums (VDP) which is highly nonlinear was put forward to conduct vibration analysis. Based on energy analysis, dynamic equations with cubic nonlinearities were established using Lagrange's equation. In order to obtain approximate solution, multiple time scales method, one of perturbation technique, was applied. Cases of non-resonant and 1:1:2:2 internal resonant were discussed. In the non-resonant case, the validity of multiple time scales method is confirmed, comparing numerical results derived from fourth order Runge-Kutta method with analytical results derived from first order approximate expression. In the 1:1:2:2 internal resonant case, modal amplitudes of Aa1 and Ab2 increase, respectively, from 0.38 to 0.63 and from 0.19 to 0.32, while the corresponding frequencies have an increase of almost 1.6 times with changes of initial conditions, indicating the existence of typical nonlinear phenomenon. In addition, the chaotic motion is found under this condition.展开更多
The free vibration characteristics of functionally graded micro-switches under combined electrostatic, axial residual stress and temperature change is investigated, with an emphasis on the effect of geometric nonlinea...The free vibration characteristics of functionally graded micro-switches under combined electrostatic, axial residual stress and temperature change is investigated, with an emphasis on the effect of geometric nonlinear deformation due to mid-plane stretching, the influence of volume fraction profile parameter and temperature change. The micro-switch considered in this study is made of either homogeneous material or non-homogeneous functionally graded material with two material phases. Taking the temperature-dependency of the effective material properties into consideration, the Voigt model is used to simulate the material properties of the FGMs (functionally graded materials). The principle of virtual work is used to derive the nonlinear governing differential equation. The eigenvalue problem which describes free vibration of the micro-beam at its statically deflected state is then solved using DQM (differential quadrature method). The natural frequencies of clamped-clamped micro-switches are obtained. The solutions are validated through direct comparisons with experimental results reported in previous studies. A parametric study is conducted to show the effects of geometric nonlinearity, material composition, temperature change and geometrical parameters for the natural frequencies.展开更多
An ultra-accurate isogeometric dynamic analysis is presented.The key ingredient of the proposed methodology is the development of isogeometric higher order mass matrix.A new one-step method is proposed for the constru...An ultra-accurate isogeometric dynamic analysis is presented.The key ingredient of the proposed methodology is the development of isogeometric higher order mass matrix.A new one-step method is proposed for the construction of higher order mass matrix.In this approach,an adjustable mass matrix is formulated through introducing a set of mass parameters into the consistent mass matrix under the element mass conservation condition.Then the semi-discrete frequency derived from the free vibration equation with the adjustable mass matrix is served as a measure to optimize the mass parameters.In 1D analysis,it turns out that the present one-step method can perfectly recover the existing reduced bandwidth mass matrix and the higher order mass matrix by choosing different mass parameters.However,the employment of the proposed one-step method to the2D membrane problem yields a remarkable gain of solution accuracy compared with the higher order mass matrix generated by the original two-step method.Subsequently a full-discrete isogeometric transient analysis algorithm is presented by using the Newmark time integration scheme and the higher order mass matrix.The full-discrete frequency is derived to assess the accuracy of space-time discretization.Finally a set of numerical examples are presented to evaluate the accuracy of the proposed method,which show that very favorable solution accuracy is achieved by the present dynamic isogeometric analysis with higher order mass formulation compared with that obtained from the standard consistent mass approach.展开更多
The bound state solutions of the relativistic Klein-Gordon equation with the Tietz-Wei diatomic molecular potential are presented for the s wave. It is shown that the solutions can be expressed by the generalized hype...The bound state solutions of the relativistic Klein-Gordon equation with the Tietz-Wei diatomic molecular potential are presented for the s wave. It is shown that the solutions can be expressed by the generalized hypergeometric functions. The normalized wavefunctions are also derived.展开更多
In the present study, using the Fourier analysis method and considering the Bianchi-type I spacetime, we investigate the dynamics of photon in the torsion gravity, and show that the free-space Maxwell equations give t...In the present study, using the Fourier analysis method and considering the Bianchi-type I spacetime, we investigate the dynamics of photon in the torsion gravity, and show that the free-space Maxwell equations give the same results. Furthermore, we also discuss the harmonic oscillator behavior of the solutions.展开更多
基金Project(50605060) supported by the National Natural Science Foundation of ChinaProject(20050056058) supported by the Research Fund for the Doctoral Program of Higher Education of ChinaProject(06YFJMJC03300) supported by the National Science Foundation of Tianjin,China
文摘The modal characteristics of the transverse vibration of an axially moving roller chain coupled with lumped mass were analyzed.The chain system was modeled by using the multi-body dynamics theory and the governing equations were derived by means of Lagrange's equations.The effects of the parameters,such as the axially moving velocity of the chain,the tension force,the weight of lumped mass and its time-variable assign position in chain span,on the modal characteristics of transverse vibration for roller chain were investigated.The numerical examples were given.It is found that the natural frequencies and the corresponding mode shapes of the transverse vibration for roller chain coupled with lumped mass change significantly when the variations of above parameters are considered.With the movement of the chain strand,the natural frequencies present a fluctuating phenomenon,which is different from the uniform chain.The higher the order of mode is,the greater the fluctuating magnitude and frequency are.
基金Project(51075350)supported by the National Natural Science Foundation of China
文摘Based on electromagnetics and mechanics, electromechanical coupled dynamic equations for the drive were developed. Using method of perturbation, free vibrations of the mechanical system under electric disturbance were investigated. The forced responses of the mechanical system to mechanical excitation under electric disturbance were also presented. It is known that for the system with electric disturbance, as time grows, beat occurs. When electric disturbing frequency is near to the natural frequencies of the mechanical system or their integer multiple, resonance vibrations occur. The forced responses of the mechanical system to mechanical excitation under electric disturbance are compound vibrations decided by mechanical excitation, electric disturbance and parameters of the system. The coupled resonance vibration caused by electric disturbance and mechanical excitation was discussed as well. The conditions under which above coupled resonance occurs were presented. The results show that when the difference of the excitation frequency and the perturbation frequency is equal to some order of natural frequency, coupled resonance vibrations occur.
基金Projects(50574091, 50774084) supported by the National Natural Science Foundation of ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions+1 种基金Project(CXLX12_0949) supported by Research and Innovation Project for College Graduates of Jiangsu Province, ChinaProject(2013DXS03) supported by the Fundamental Research Funds for the Central Universities, China
文摘A model of vibrating device coupling two pendulums (VDP) which is highly nonlinear was put forward to conduct vibration analysis. Based on energy analysis, dynamic equations with cubic nonlinearities were established using Lagrange's equation. In order to obtain approximate solution, multiple time scales method, one of perturbation technique, was applied. Cases of non-resonant and 1:1:2:2 internal resonant were discussed. In the non-resonant case, the validity of multiple time scales method is confirmed, comparing numerical results derived from fourth order Runge-Kutta method with analytical results derived from first order approximate expression. In the 1:1:2:2 internal resonant case, modal amplitudes of Aa1 and Ab2 increase, respectively, from 0.38 to 0.63 and from 0.19 to 0.32, while the corresponding frequencies have an increase of almost 1.6 times with changes of initial conditions, indicating the existence of typical nonlinear phenomenon. In addition, the chaotic motion is found under this condition.
基金Acknowledgments The research was financially supported by the National Natural Science Foundation of China (Grant No. 11402309) and the Science Foundation of China University of Petroleum, Beijing (No. YJRC-2013-32).
文摘The free vibration characteristics of functionally graded micro-switches under combined electrostatic, axial residual stress and temperature change is investigated, with an emphasis on the effect of geometric nonlinear deformation due to mid-plane stretching, the influence of volume fraction profile parameter and temperature change. The micro-switch considered in this study is made of either homogeneous material or non-homogeneous functionally graded material with two material phases. Taking the temperature-dependency of the effective material properties into consideration, the Voigt model is used to simulate the material properties of the FGMs (functionally graded materials). The principle of virtual work is used to derive the nonlinear governing differential equation. The eigenvalue problem which describes free vibration of the micro-beam at its statically deflected state is then solved using DQM (differential quadrature method). The natural frequencies of clamped-clamped micro-switches are obtained. The solutions are validated through direct comparisons with experimental results reported in previous studies. A parametric study is conducted to show the effects of geometric nonlinearity, material composition, temperature change and geometrical parameters for the natural frequencies.
基金supported by the National Natural Science Foundation of China(Grant No.11222221)
文摘An ultra-accurate isogeometric dynamic analysis is presented.The key ingredient of the proposed methodology is the development of isogeometric higher order mass matrix.A new one-step method is proposed for the construction of higher order mass matrix.In this approach,an adjustable mass matrix is formulated through introducing a set of mass parameters into the consistent mass matrix under the element mass conservation condition.Then the semi-discrete frequency derived from the free vibration equation with the adjustable mass matrix is served as a measure to optimize the mass parameters.In 1D analysis,it turns out that the present one-step method can perfectly recover the existing reduced bandwidth mass matrix and the higher order mass matrix by choosing different mass parameters.However,the employment of the proposed one-step method to the2D membrane problem yields a remarkable gain of solution accuracy compared with the higher order mass matrix generated by the original two-step method.Subsequently a full-discrete isogeometric transient analysis algorithm is presented by using the Newmark time integration scheme and the higher order mass matrix.The full-discrete frequency is derived to assess the accuracy of space-time discretization.Finally a set of numerical examples are presented to evaluate the accuracy of the proposed method,which show that very favorable solution accuracy is achieved by the present dynamic isogeometric analysis with higher order mass formulation compared with that obtained from the standard consistent mass approach.
基金Supported Partly by Projects 20120876-SIP-IPN and COFAA-IPN,Mexico
文摘The bound state solutions of the relativistic Klein-Gordon equation with the Tietz-Wei diatomic molecular potential are presented for the s wave. It is shown that the solutions can be expressed by the generalized hypergeometric functions. The normalized wavefunctions are also derived.
文摘In the present study, using the Fourier analysis method and considering the Bianchi-type I spacetime, we investigate the dynamics of photon in the torsion gravity, and show that the free-space Maxwell equations give the same results. Furthermore, we also discuss the harmonic oscillator behavior of the solutions.