Tourism in mountainous regions is a significant source of revenue generation. However, it has also been associated with many adverse environmental consequences. This study aims at assessing the negative impacts of the...Tourism in mountainous regions is a significant source of revenue generation. However, it has also been associated with many adverse environmental consequences. This study aims at assessing the negative impacts of the incessant upsurge in tourism development on the physical environment of Mussoorie, a well-known mountain tourist destination in India. The impact indicators for the region were identified and assessed by qualitative and quantitative analysis of field observations. The observations indicated the aggravation of traffic congestion, atmospheric pollution, undisposed solid waste, water scarcity and infrastructure unavailability as the prevalent issues, especially during the peak tourist months. The extent of the consequential damage to the environment was evaluated by conducting an assessment of tourism-induced human disturbance on the natural landscape of the town. Slope, slope aspect, vegetation cover, road network and drainage network were incorporated as thedetermining landscape attributes to prepare thematic maps of landscape quality(perceivable intrinsic properties) and landscape fragility(vulnerability to anthropogenic disturbances) using GIS technique. An absorption capacity map was finally prepared to characterize the study area into regions of different conservation needs. The results identified the need for planning appropriate preservation strategies for different tourist places in the town. The study can be used by the policy makers for implementing the regulatory measures against potential disturbances due to mass-tourism.展开更多
In this paper, bridge alignment control with considering dynamic train loads was experimentally and theoretically investigated.Analytical process of bridge dynamics and the self-adaptive Kalman filter bridge alignment...In this paper, bridge alignment control with considering dynamic train loads was experimentally and theoretically investigated.Analytical process of bridge dynamics and the self-adaptive Kalman filter bridge alignment control method with considering the dynamic train loads were briefly introduced. The static measurement, the dynamic test, the field alignment measurement as well as the finite element analysis(FEA) of the second longest rail transit cable-stayed bridge in the world were carried out.Based on the results, the train dynamic load effect on the bridge alignment was obtained quantitatively. Subsequently, alignment control of the rail transit bridge with considering this effect using a self-adaptive Kalman filter method was analyzed. The results show that:(a) the dynamic train loads have effects on alignment control of the bridge and therefore cannot be neglected;(b) the self-adaptive Kalman filter method is applicable and reliable for alignment control of bridges during construction. The analytical method and whole process contribute to develop a related specification and further engineering applications.展开更多
基金Financial support provided to the first author from the Department of Science&Technology,Government of India under grant DST/INSPIRE FELLOWSHIP/2012/558
文摘Tourism in mountainous regions is a significant source of revenue generation. However, it has also been associated with many adverse environmental consequences. This study aims at assessing the negative impacts of the incessant upsurge in tourism development on the physical environment of Mussoorie, a well-known mountain tourist destination in India. The impact indicators for the region were identified and assessed by qualitative and quantitative analysis of field observations. The observations indicated the aggravation of traffic congestion, atmospheric pollution, undisposed solid waste, water scarcity and infrastructure unavailability as the prevalent issues, especially during the peak tourist months. The extent of the consequential damage to the environment was evaluated by conducting an assessment of tourism-induced human disturbance on the natural landscape of the town. Slope, slope aspect, vegetation cover, road network and drainage network were incorporated as thedetermining landscape attributes to prepare thematic maps of landscape quality(perceivable intrinsic properties) and landscape fragility(vulnerability to anthropogenic disturbances) using GIS technique. An absorption capacity map was finally prepared to characterize the study area into regions of different conservation needs. The results identified the need for planning appropriate preservation strategies for different tourist places in the town. The study can be used by the policy makers for implementing the regulatory measures against potential disturbances due to mass-tourism.
基金supported by the State Key Laboratory Breeding Base of Mountain Bridge and Tunnel Engineering(Chongqing Jiaotong University)fund(Grant No.CQSLBF-Y16-16)the Engineering Research Center of Bridge Structure and Material in the Mountainous Area Fund(Grant No.QLGCZX-JJ2015-6)+4 种基金the National Natural Science Foundation of China(Grant No.51408087)the Construction Technology Project of Ministry of Transport(Grant No.2015318814190)the Key Project of Foundation and Frontier Research of Chongqing(Grant No.cstc2015jcyjBX0022)the Application Foundation Research Project of Ministry of transport(Grant No.2013319814180)the "Xiaoping Science and Technology Innovation Team" fund for Chinese college students
文摘In this paper, bridge alignment control with considering dynamic train loads was experimentally and theoretically investigated.Analytical process of bridge dynamics and the self-adaptive Kalman filter bridge alignment control method with considering the dynamic train loads were briefly introduced. The static measurement, the dynamic test, the field alignment measurement as well as the finite element analysis(FEA) of the second longest rail transit cable-stayed bridge in the world were carried out.Based on the results, the train dynamic load effect on the bridge alignment was obtained quantitatively. Subsequently, alignment control of the rail transit bridge with considering this effect using a self-adaptive Kalman filter method was analyzed. The results show that:(a) the dynamic train loads have effects on alignment control of the bridge and therefore cannot be neglected;(b) the self-adaptive Kalman filter method is applicable and reliable for alignment control of bridges during construction. The analytical method and whole process contribute to develop a related specification and further engineering applications.