The agility and the flexibility of the current shop floor control systems have been limited so far, owing to the lack of structural flexibility and agility in its control software layer. Most of them are based on trad...The agility and the flexibility of the current shop floor control systems have been limited so far, owing to the lack of structural flexibility and agility in its control software layer. Most of them are based on traditional hierarchical architecture and the top down approach and depend structurally on their specific configuration and job scheduling. Not only can they hardly satisfactorily adapt to these increasing changes and disturbances, but also make the redevelopment and maintenance of shop floor control system (SFCS) to need high cost and much time. And SFCS based on the heterarchical architecture don′t provide a predictable and high performance system, especially not in the heterogeneous environments, where the resources are scarce and the current decisions have serious repercussions on the future performances. For this reason, the heterarchical control is hardly applied in industry. Obviously, it is necessary to develop a new structural framework of reconfigurable SFCS to improve their agility, flexibility and maintainability. This paper presents a holonic framework of reconfigurable SFCS based on holonic manufacturing concepts. The framework is composed of resource holons, product holons and other staff holons. The model of each holon and the co operative mechanisms of holons are described. To verify the proposed approach experimentally, a prototype reconfigurable SFCS for a flexible manufacturing shop floor producing discrete parts is implemented.展开更多
Based on the discussion of functions, components, control structure and network computing architecture of generic shop floor control (GSFC) in computer integrated manufacturing system (CIMS), the internal integrati...Based on the discussion of functions, components, control structure and network computing architecture of generic shop floor control (GSFC) in computer integrated manufacturing system (CIMS), the internal integration between components of GSFC and the external integration between GSFC and the other components of CIMS are studied. The integration models on the aspects of function, information, processing and interface are put forward. The integration models and the methods are implemented and applied in CIMS projects successfully.展开更多
Modeling of energy consumption(EC) and effluent quality(EQ) are very essential problems that need to be solved for the multiobjective optimal control in the wastewater treatment process(WWTP). To address this issue, a...Modeling of energy consumption(EC) and effluent quality(EQ) are very essential problems that need to be solved for the multiobjective optimal control in the wastewater treatment process(WWTP). To address this issue, a density peaks-based adaptive fuzzy neural network(DP-AFNN) is proposed in this study. To obtain suitable fuzzy rules, a DP-based clustering method is applied to fit the cluster centers to process nonlinearity.The parameters of the extracted fuzzy rules are fine-tuned based on the improved Levenberg-Marquardt algorithm during the training process. Furthermore, the analysis of convergence is performed to guarantee the successful application of the DPAFNN. Finally, the proposed DP-AFNN is utilized to develop the models of EC and EQ in the WWTP. The experimental results show that the proposed DP-AFNN can achieve fast convergence speed and high prediction accuracy in comparison with some existing methods.展开更多
A three-layer model for digital communication in a mine is proposed. Two basic platforms are discussed: A uniform transmission network and a uniform data warehouse. An actual,ControlNet based,transmission network plat...A three-layer model for digital communication in a mine is proposed. Two basic platforms are discussed: A uniform transmission network and a uniform data warehouse. An actual,ControlNet based,transmission network plat-form suitable for the Jining No.3 coal mine is presented. This network is an information superhighway intended to inte-grate all existing and new automation subsystems. Its standard interface can be used with future subsystems. The net-work,data structure and management decision-making all employ this uniform hardware and software. This effectively avoids the problems of system and information islands seen in traditional mine-automation systems. The construction of the network provides a stable foundation for digital communication in the Jining No.3 coal mine.展开更多
Various control systems for a robotic excavator named LUCIE (Lancaster University Computerized and Intelligent Excavator),were investigated. The excavator is being developed to dig trenches autonomously. One stumbling...Various control systems for a robotic excavator named LUCIE (Lancaster University Computerized and Intelligent Excavator),were investigated. The excavator is being developed to dig trenches autonomously. One stumbling block is the achievement of adequate,accurate,quick and smooth movement under automatic control. Here,both classical and modern approaches are considered,including proportional-integral-derivative (PID) control tuned by conventional Zigler-Nichols rules,linear proportional-integral-plus (PIP) control,and a novel nonlinear PIP controller based on a state-dependent parameter (SDP) model structure,in which the parameters are functionally dependent on other variables in the system. Implementation results for the excavator joint arms control demonstrate that SDP-PIP controller provides the improved performance with fast,smooth and accurate response in comparison with both PID and linearized PIP control.展开更多
Design of general multivariable process controllers is an attractive and practical alternative to optimizing design by evolutionary algorithms (EAs) since it can be formulated as an optimization problem. A closed-loop...Design of general multivariable process controllers is an attractive and practical alternative to optimizing design by evolutionary algorithms (EAs) since it can be formulated as an optimization problem. A closed-loop particle swarm optimization (CLPSO) algorithm is proposed by mapping PSO elements into the closed-loop system based on control theories. At each time step, a proportional integral (PI) controller is used to calculate an updated inertia weight for each particle in swarms from its last fitness. With this modification, limitations caused by a uniform inertia weight for the whole population are avoided, and the particles have enough diversity. After the effectiveness, efficiency and robustness are tested by benchmark functions, CLPSO is applied to design a multivariable proportional-integral-derivative (PID) controller for a solvent dehydration tower in a chemical plant and has improved its performances.展开更多
In this paper, both output-feedback iterative learning control(ILC) and repetitive learning control(RLC) schemes are proposed for trajectory tracking of nonlinear systems with state-dependent time-varying uncertaintie...In this paper, both output-feedback iterative learning control(ILC) and repetitive learning control(RLC) schemes are proposed for trajectory tracking of nonlinear systems with state-dependent time-varying uncertainties. An iterative learning controller, together with a state observer and a fully-saturated learning mechanism, through Lyapunov-like synthesis, is designed to deal with time-varying parametric uncertainties. The estimations for outputs, instead of system outputs themselves, are applied to form the error equation, which helps to establish convergence of the system outputs to the desired ones. This method is then extended to repetitive learning controller design. The boundedness of all the signals in the closed-loop is guaranteed and asymptotic convergence of both the state estimation error and the tracking error is established in both cases of ILC and RLC. Numerical results are presented to verify the effectiveness of the proposed methods.展开更多
Recent results on the development of a navigation system for a smart wheelchair are presented in this paper. In order to reduce the development cost, a modular solution is designed by using commercial and low cost dev...Recent results on the development of a navigation system for a smart wheelchair are presented in this paper. In order to reduce the development cost, a modular solution is designed by using commercial and low cost devices. The functionalities of the tracking control system are described. Experimental results of the proposed assistive system are also presented and discussed.展开更多
Aiming at the unsatisfactory dynamic performances of conventional model predictive control (MPC) in a highly nonlinear process, a scheme employed the fuzzy neural network to realize the nonlinear process is proposed. ...Aiming at the unsatisfactory dynamic performances of conventional model predictive control (MPC) in a highly nonlinear process, a scheme employed the fuzzy neural network to realize the nonlinear process is proposed. The neuro-fuzzy predictor has the capability of achieving high predictive accuracy due to its nonlinear mapping and interpolation features, and adaptively updating network parameters by a learning procedure to reduce the model errors caused by changes of the process under control. To cope with the difficult problem of nonlinear optimization, Pepanaqi method was applied to search the optimal or suboptimal solution. Comparisons were made among the objective function values of alternatives in initial space. The search was then confined to shrink the smaller region according to results of comparisons. The convergent point was finally approached to be considered as the optimal or suboptimal solution. Experimental results of the neuro-fuzzy predictive control for drier application reveal that the proposed control scheme has less tracking errors and can smooth control actions, which is applicable to changes of drying condition.展开更多
Injection molding machine,hydraulic elevator,speed actuators belong to variable speed pump control cylinder system.Because variable speed pump control cylinder system is a nonlinear hydraulic system,it has some proble...Injection molding machine,hydraulic elevator,speed actuators belong to variable speed pump control cylinder system.Because variable speed pump control cylinder system is a nonlinear hydraulic system,it has some problems such as response lag and poor steady-state accuracy.To solve these problems,for the hydraulic cylinder of injection molding machine driven by the servo motor,a fractional order proportion-integration-diferentiation(FOPID)control strategy is proposed to realize the speed tracking control.Combined with the adaptive differential evolution algorithm,FOPID control strategy is used to determine the parameters of controller on line based on the test on the servo-motor-driven gear-pump-controlled hydraulic cylinder injection molding machine.Then the slef-adaptive differential evolution fractional order PID controller(SADE-FOPID)model of variable speed pump-controlled hydraulic cylinder is established in the test system with simulated loading.The simulation results show that compared with the classical PID control,the FOPID has better steady-state accuracy and fast response when the control parameters are optimized by the adaptive differential evolution algorithm.Experimental results show that SADE-FOPID control strategy is effective and feasible,and has good anti-load disturbance performance.展开更多
A control method of direct adaptive control based on gradient estimation is proposed in this article. The dynamic system is embedded in a linear model set. Based on the embedding property of the dynamic system, an ada...A control method of direct adaptive control based on gradient estimation is proposed in this article. The dynamic system is embedded in a linear model set. Based on the embedding property of the dynamic system, an adaptive optimal control algorithm is proposed. The robust convergence of the proposed control algorithm has been proved and the static control error with the proposed method is also analyzed. The application results of the proposed method to the industrial polypropylene process have verified its feasibility and effectiveness.展开更多
This work presents two different methods-nonlinear control method and adaptive control approach to achieve the modified projective synchronization of a new hyperchaotic system with known or unknown parameters.Based on...This work presents two different methods-nonlinear control method and adaptive control approach to achieve the modified projective synchronization of a new hyperchaotic system with known or unknown parameters.Based on Lyapunov stability theory,nonlinear control method is adopted when the parameters of driving and response systems are known beforehand;when the parameters are fully unknown,adaptive controllers and parameters update laws are proposed to synchronize two different hyperchaotic system and identify the unknown parameters.Moreover,the rate of synchronization can be regulated by adjusting the control gains designed in the controllers.The corresponding simulations are exploited to demonstrate the effectiveness of the proposed two methods.展开更多
To make magnetic separator more excellent in beneficiation, an advanced automatic control system for magnetic separator was designed. This paper designs automatic control system for magnetic separators, combination wi...To make magnetic separator more excellent in beneficiation, an advanced automatic control system for magnetic separator was designed. This paper designs automatic control system for magnetic separators, combination with PLC and technology of vary frequency. This system can wholly supervise and control the parameters of work course of magnetic separators.展开更多
A new inexpensive vineyard protection against hailstorm has been realized and tested. The system has been designed and organized in such a way to perform autonomously local activities to physically control the protect...A new inexpensive vineyard protection against hailstorm has been realized and tested. The system has been designed and organized in such a way to perform autonomously local activities to physically control the protection of the vineyard but also to transmit information toward a remote control. Each row has an "umbrella" designed by the authors which, unlike other commercial solutions, protects the product without hindering all the mechanical activities typical of a modem vineyard. Locally the single umbrella uses an electronic card for the management and a ZigBee mesh telecommunication network to transmit data to a central control unit which manages the protection. Because of its efficiency, a Raspberry-Pi control card has been chosen as central unit. Finally, a WiMAX connection was chosen to remotely control the system, thus allowing the authors to overcome distance limitations of commercial Wi-Fi networks. The system has been realized and tested for some months in field also during a hailstorm. The results of these tests proved how the system is easy to use and effectively protects against hail; moreover the authors proved the high reliability of the mechanical components which allow the authors to lower the maintenance costs.展开更多
With the help of adaptive control theory to chaos synchronization, this paper provides a kind of controlling strategy that is adaptive control by which we can synchronize the Lorenz chaotic dynamical system. The theor...With the help of adaptive control theory to chaos synchronization, this paper provides a kind of controlling strategy that is adaptive control by which we can synchronize the Lorenz chaotic dynamical system. The theoretical analysis and simulation show using this controlling strategy, we can synchronize chaotic systems with the unknown parameters and the different initial conditions.展开更多
In recent years,power saving problem has become more and more important in many fields and attracted a lot of research interests.In this paper,the authors consider the power saving problem in the virtualized computing...In recent years,power saving problem has become more and more important in many fields and attracted a lot of research interests.In this paper,the authors consider the power saving problem in the virtualized computing system.Since there are multiple objectives in the system as well as many factors influencing the objectives,the problem is complex and hard.The authors will formulate the problem as an optimization problem of power consumption with a prior requirement on performance,which is taken as the response time in the paper.To solve the problem,the authors design the adaptive controller based on least-square self-tuning regulator to dynamically regulate the computing resource so as to track a given reasonable reference performance and then minimize the power consumption using the tracking result supplied by the controller at each time.Simulation is implemented based on the data collected from real machines and the time delay of turning on/off the machine is included in the process.The results show that this method based on adaptive control theory can save power consumption greatly with satisfying the performance requirement at the same time,thus it is suitable and effective to solve the problem.展开更多
Reliable connection of turbine generators in complex main wiring structures to the power grid through a plurality of switches is a new key problem,referred to as multipoint automatic synchronization(MPAS),in automatic...Reliable connection of turbine generators in complex main wiring structures to the power grid through a plurality of switches is a new key problem,referred to as multipoint automatic synchronization(MPAS),in automatic control systems(ACS).In this paper,different methods of voltage-frequency and phase-difference control are analyzed,and a control methodology based on active frequency tracking(AFT)is presented.Through the establishment of the multi-point automatic synchronization model and the analysis of the governor transfer function with this control method,the important control parameters and automatic process control sequence are summarized.The correctness and effectiveness of the designed methodology are inspected through on-site testing,and the importance of the function and selection of parameters are also explored.展开更多
文摘The agility and the flexibility of the current shop floor control systems have been limited so far, owing to the lack of structural flexibility and agility in its control software layer. Most of them are based on traditional hierarchical architecture and the top down approach and depend structurally on their specific configuration and job scheduling. Not only can they hardly satisfactorily adapt to these increasing changes and disturbances, but also make the redevelopment and maintenance of shop floor control system (SFCS) to need high cost and much time. And SFCS based on the heterarchical architecture don′t provide a predictable and high performance system, especially not in the heterogeneous environments, where the resources are scarce and the current decisions have serious repercussions on the future performances. For this reason, the heterarchical control is hardly applied in industry. Obviously, it is necessary to develop a new structural framework of reconfigurable SFCS to improve their agility, flexibility and maintainability. This paper presents a holonic framework of reconfigurable SFCS based on holonic manufacturing concepts. The framework is composed of resource holons, product holons and other staff holons. The model of each holon and the co operative mechanisms of holons are described. To verify the proposed approach experimentally, a prototype reconfigurable SFCS for a flexible manufacturing shop floor producing discrete parts is implemented.
文摘Based on the discussion of functions, components, control structure and network computing architecture of generic shop floor control (GSFC) in computer integrated manufacturing system (CIMS), the internal integration between components of GSFC and the external integration between GSFC and the other components of CIMS are studied. The integration models on the aspects of function, information, processing and interface are put forward. The integration models and the methods are implemented and applied in CIMS projects successfully.
基金supported by the National Science Foundation for Distinguished Young Scholars of China(61225016)the State Key Program of National Natural Science of China(61533002)
文摘Modeling of energy consumption(EC) and effluent quality(EQ) are very essential problems that need to be solved for the multiobjective optimal control in the wastewater treatment process(WWTP). To address this issue, a density peaks-based adaptive fuzzy neural network(DP-AFNN) is proposed in this study. To obtain suitable fuzzy rules, a DP-based clustering method is applied to fit the cluster centers to process nonlinearity.The parameters of the extracted fuzzy rules are fine-tuned based on the improved Levenberg-Marquardt algorithm during the training process. Furthermore, the analysis of convergence is performed to guarantee the successful application of the DPAFNN. Finally, the proposed DP-AFNN is utilized to develop the models of EC and EQ in the WWTP. The experimental results show that the proposed DP-AFNN can achieve fast convergence speed and high prediction accuracy in comparison with some existing methods.
基金Project 50574094 supported by the National Natural Science Foundation of China
文摘A three-layer model for digital communication in a mine is proposed. Two basic platforms are discussed: A uniform transmission network and a uniform data warehouse. An actual,ControlNet based,transmission network plat-form suitable for the Jining No.3 coal mine is presented. This network is an information superhighway intended to inte-grate all existing and new automation subsystems. Its standard interface can be used with future subsystems. The net-work,data structure and management decision-making all employ this uniform hardware and software. This effectively avoids the problems of system and information islands seen in traditional mine-automation systems. The construction of the network provides a stable foundation for digital communication in the Jining No.3 coal mine.
基金Work supported by the Lancaster University,UK and Jiangsu Provincial Laboratory of Advanced Robotics,SooChow University,ChinaProject(BK2009509) supported by the Natural Science Foundation of Jiangsu Province,China+1 种基金Project(K5117827) supported by the Scientific Research Foundation for the Returned Scholars,Ministry of Education of ChinaProject(Q3117918) supported by the Scientific Research Foundation for Young Teachers of Soochow University,China
文摘Various control systems for a robotic excavator named LUCIE (Lancaster University Computerized and Intelligent Excavator),were investigated. The excavator is being developed to dig trenches autonomously. One stumbling block is the achievement of adequate,accurate,quick and smooth movement under automatic control. Here,both classical and modern approaches are considered,including proportional-integral-derivative (PID) control tuned by conventional Zigler-Nichols rules,linear proportional-integral-plus (PIP) control,and a novel nonlinear PIP controller based on a state-dependent parameter (SDP) model structure,in which the parameters are functionally dependent on other variables in the system. Implementation results for the excavator joint arms control demonstrate that SDP-PIP controller provides the improved performance with fast,smooth and accurate response in comparison with both PID and linearized PIP control.
文摘Design of general multivariable process controllers is an attractive and practical alternative to optimizing design by evolutionary algorithms (EAs) since it can be formulated as an optimization problem. A closed-loop particle swarm optimization (CLPSO) algorithm is proposed by mapping PSO elements into the closed-loop system based on control theories. At each time step, a proportional integral (PI) controller is used to calculate an updated inertia weight for each particle in swarms from its last fitness. With this modification, limitations caused by a uniform inertia weight for the whole population are avoided, and the particles have enough diversity. After the effectiveness, efficiency and robustness are tested by benchmark functions, CLPSO is applied to design a multivariable proportional-integral-derivative (PID) controller for a solvent dehydration tower in a chemical plant and has improved its performances.
基金supported by the Third Level of Hangzhou 131 Young Talent Cultivation Plan Funding2018 Soft Science Research Project of Zhejiang Provincial Science and Technology Department Zhejiang Province Construction and participate in the“The Belt and Road”Technology Innovation Community Path Research(2018C35029)
文摘In this paper, both output-feedback iterative learning control(ILC) and repetitive learning control(RLC) schemes are proposed for trajectory tracking of nonlinear systems with state-dependent time-varying uncertainties. An iterative learning controller, together with a state observer and a fully-saturated learning mechanism, through Lyapunov-like synthesis, is designed to deal with time-varying parametric uncertainties. The estimations for outputs, instead of system outputs themselves, are applied to form the error equation, which helps to establish convergence of the system outputs to the desired ones. This method is then extended to repetitive learning controller design. The boundedness of all the signals in the closed-loop is guaranteed and asymptotic convergence of both the state estimation error and the tracking error is established in both cases of ILC and RLC. Numerical results are presented to verify the effectiveness of the proposed methods.
文摘Recent results on the development of a navigation system for a smart wheelchair are presented in this paper. In order to reduce the development cost, a modular solution is designed by using commercial and low cost devices. The functionalities of the tracking control system are described. Experimental results of the proposed assistive system are also presented and discussed.
基金Sponsored by the National Electric Power Corporation Foundation of China(Grant No.SPKJ010-27)
文摘Aiming at the unsatisfactory dynamic performances of conventional model predictive control (MPC) in a highly nonlinear process, a scheme employed the fuzzy neural network to realize the nonlinear process is proposed. The neuro-fuzzy predictor has the capability of achieving high predictive accuracy due to its nonlinear mapping and interpolation features, and adaptively updating network parameters by a learning procedure to reduce the model errors caused by changes of the process under control. To cope with the difficult problem of nonlinear optimization, Pepanaqi method was applied to search the optimal or suboptimal solution. Comparisons were made among the objective function values of alternatives in initial space. The search was then confined to shrink the smaller region according to results of comparisons. The convergent point was finally approached to be considered as the optimal or suboptimal solution. Experimental results of the neuro-fuzzy predictive control for drier application reveal that the proposed control scheme has less tracking errors and can smooth control actions, which is applicable to changes of drying condition.
基金National Natural Science Foundation of China(No.51675399)。
文摘Injection molding machine,hydraulic elevator,speed actuators belong to variable speed pump control cylinder system.Because variable speed pump control cylinder system is a nonlinear hydraulic system,it has some problems such as response lag and poor steady-state accuracy.To solve these problems,for the hydraulic cylinder of injection molding machine driven by the servo motor,a fractional order proportion-integration-diferentiation(FOPID)control strategy is proposed to realize the speed tracking control.Combined with the adaptive differential evolution algorithm,FOPID control strategy is used to determine the parameters of controller on line based on the test on the servo-motor-driven gear-pump-controlled hydraulic cylinder injection molding machine.Then the slef-adaptive differential evolution fractional order PID controller(SADE-FOPID)model of variable speed pump-controlled hydraulic cylinder is established in the test system with simulated loading.The simulation results show that compared with the classical PID control,the FOPID has better steady-state accuracy and fast response when the control parameters are optimized by the adaptive differential evolution algorithm.Experimental results show that SADE-FOPID control strategy is effective and feasible,and has good anti-load disturbance performance.
基金Supported by the National Natural Science Foundation of China (60774080) and BJNOVA 2005B 15.
文摘A control method of direct adaptive control based on gradient estimation is proposed in this article. The dynamic system is embedded in a linear model set. Based on the embedding property of the dynamic system, an adaptive optimal control algorithm is proposed. The robust convergence of the proposed control algorithm has been proved and the static control error with the proposed method is also analyzed. The application results of the proposed method to the industrial polypropylene process have verified its feasibility and effectiveness.
基金National Natural Science Foundation of China(No.60874113)
文摘This work presents two different methods-nonlinear control method and adaptive control approach to achieve the modified projective synchronization of a new hyperchaotic system with known or unknown parameters.Based on Lyapunov stability theory,nonlinear control method is adopted when the parameters of driving and response systems are known beforehand;when the parameters are fully unknown,adaptive controllers and parameters update laws are proposed to synchronize two different hyperchaotic system and identify the unknown parameters.Moreover,the rate of synchronization can be regulated by adjusting the control gains designed in the controllers.The corresponding simulations are exploited to demonstrate the effectiveness of the proposed two methods.
文摘To make magnetic separator more excellent in beneficiation, an advanced automatic control system for magnetic separator was designed. This paper designs automatic control system for magnetic separators, combination with PLC and technology of vary frequency. This system can wholly supervise and control the parameters of work course of magnetic separators.
文摘A new inexpensive vineyard protection against hailstorm has been realized and tested. The system has been designed and organized in such a way to perform autonomously local activities to physically control the protection of the vineyard but also to transmit information toward a remote control. Each row has an "umbrella" designed by the authors which, unlike other commercial solutions, protects the product without hindering all the mechanical activities typical of a modem vineyard. Locally the single umbrella uses an electronic card for the management and a ZigBee mesh telecommunication network to transmit data to a central control unit which manages the protection. Because of its efficiency, a Raspberry-Pi control card has been chosen as central unit. Finally, a WiMAX connection was chosen to remotely control the system, thus allowing the authors to overcome distance limitations of commercial Wi-Fi networks. The system has been realized and tested for some months in field also during a hailstorm. The results of these tests proved how the system is easy to use and effectively protects against hail; moreover the authors proved the high reliability of the mechanical components which allow the authors to lower the maintenance costs.
文摘With the help of adaptive control theory to chaos synchronization, this paper provides a kind of controlling strategy that is adaptive control by which we can synchronize the Lorenz chaotic dynamical system. The theoretical analysis and simulation show using this controlling strategy, we can synchronize chaotic systems with the unknown parameters and the different initial conditions.
基金supported by the National Natural Science Foundation of China under Grant No.61304159
文摘In recent years,power saving problem has become more and more important in many fields and attracted a lot of research interests.In this paper,the authors consider the power saving problem in the virtualized computing system.Since there are multiple objectives in the system as well as many factors influencing the objectives,the problem is complex and hard.The authors will formulate the problem as an optimization problem of power consumption with a prior requirement on performance,which is taken as the response time in the paper.To solve the problem,the authors design the adaptive controller based on least-square self-tuning regulator to dynamically regulate the computing resource so as to track a given reasonable reference performance and then minimize the power consumption using the tracking result supplied by the controller at each time.Simulation is implemented based on the data collected from real machines and the time delay of turning on/off the machine is included in the process.The results show that this method based on adaptive control theory can save power consumption greatly with satisfying the performance requirement at the same time,thus it is suitable and effective to solve the problem.
文摘Reliable connection of turbine generators in complex main wiring structures to the power grid through a plurality of switches is a new key problem,referred to as multipoint automatic synchronization(MPAS),in automatic control systems(ACS).In this paper,different methods of voltage-frequency and phase-difference control are analyzed,and a control methodology based on active frequency tracking(AFT)is presented.Through the establishment of the multi-point automatic synchronization model and the analysis of the governor transfer function with this control method,the important control parameters and automatic process control sequence are summarized.The correctness and effectiveness of the designed methodology are inspected through on-site testing,and the importance of the function and selection of parameters are also explored.