期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
现代机械工程中自动控制系统的研究与应用 被引量:2
1
作者 杜中 汤勇 《湖南工业职业技术学院学报》 2013年第5期24-26,共3页
回顾现代机械工程中自动控制系统的研究历史和研究内容,对进入二十一世纪后自控系统研究中的若干关键技术及其应用做了归纳性介绍,并在揭示科学原理的基础上作出了一些预见性的阐述。
关键词 机械自控系统 多轴运动控制 PLC新概念 纳米光电子芯片 智能控制 自控系统网络化
下载PDF
Adaptive Neural Network-Based Control for a Class of Nonlinear Pure-Feedback Systems With Time-Varying Full State Constraints 被引量:14
2
作者 Tingting Gao Yan-Jun Liu +3 位作者 Senior Member IEEE Lei Liu Dapeng Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第5期923-933,共11页
Abstract--In this paper, an adaptive neural network (NN) control approach is proposed for nonlinear pure-feedback sys- tems with time-varying full state constraints. The pure-feedback systems of this paper are assum... Abstract--In this paper, an adaptive neural network (NN) control approach is proposed for nonlinear pure-feedback sys- tems with time-varying full state constraints. The pure-feedback systems of this paper are assumed to possess nonlinear function uncertainties. By using the mean value theorem, pure-feedback systems can be transformed into strict feedback forms. For the newly generated systems, NNs are employed to approximate unknown items. Based on the adaptive control scheme and backstepping algorithm, an intelligent controller is designed. At the same time, time-varying Barrier Lyapunov functions (BLFs) with error variables are adopted to avoid violating full state constraints in every step of the backstepping design. All closed- loop signals are uniformly ultimately bounded and the output tracking error converges to the neighborhood of zero, which can be verified by using the Lyapunov stability theorem. Two simulation examples reveal the performance of the adaptive NN control approach. Index TermsmAdaptive control, neural networks (NNs), non- linear pure-feedback systems, time-varying constraints. 展开更多
关键词 Adaptive control neural networks(NNs) nonlinear pure-feedback systems time-varying constraints
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部