In order to save the energy and reduce the latency of the end-to-end transmission in mobile ad hoc networks an adaptive and distance-driven power control ADPC scheme is proposed by means of distance research in random...In order to save the energy and reduce the latency of the end-to-end transmission in mobile ad hoc networks an adaptive and distance-driven power control ADPC scheme is proposed by means of distance research in random geometrics. Through mathematical proof the optimal number of relay nodes and the optimal location of each node for data transmission can be obtained when a distance is given.In the ADPC first the source node computes the optimal number and the sites of the relay nodes between the source and the destination nodes.Then it searches feasible relay nodes around the optimal virtual relay-sites and selects one link with the minimal total transmission energy consumption for data transmission.Simulation results show that the ADPC can reduce both the energy dissipation and the end-to-end latency of the transmission.展开更多
Air conditioning (AC) system is the one with asynchronous and uncertain nature. In this paper, the fuzzy discrete event system (FDES) is introduced to the research of AC energy-saving control. A fuzzy automaton modeli...Air conditioning (AC) system is the one with asynchronous and uncertain nature. In this paper, the fuzzy discrete event system (FDES) is introduced to the research of AC energy-saving control. A fuzzy automaton modeling is given for AC energy-saving control and effectiveness optimization is made. To facilitate the implement of the control and energy saving, priorities have been assigned to the major control steps based on logical reasoning. Forward-looking tree modeling based on FDES has been simplified to help further optimization, and a simple and concrete example has been put forward illustrating energy-saving control in AC system.展开更多
Energy conservation in homes has become important due to rising energy costs, increasing energy consumption, and a world-wide shift in concerns. This paper discusses an embedded home automation system that provides a ...Energy conservation in homes has become important due to rising energy costs, increasing energy consumption, and a world-wide shift in concerns. This paper discusses an embedded home automation system that provides a method for monitoring and controlling household energy consuming devices. The hardware, software and system interface means utilized for implementation are presented and the particulars of the initial prototype are detailed.展开更多
The introduction of daylight can improve buildings’energy efficiency and bring benefit to occupant satisfaction.However,the introduction of daylight may accompany with excessive heat.Properly counterbalancing the ene...The introduction of daylight can improve buildings’energy efficiency and bring benefit to occupant satisfaction.However,the introduction of daylight may accompany with excessive heat.Properly counterbalancing the energy consumption of air conditioning and lighting systems owing to the entry of daylight is a critical control target of dynamic shading adjustment in cooling season.Most dynamic shading control strategies in use only consider one single system.Additionally,for advanced control mode like performance-based control,the predictive model usually only examines the instantaneous effect of energy performance to determine the shading adjustment state,unable to quantify the overall influence of shading adjustment state on building energy consumption.In order to address this issue,special consideration is given to calculating the cumulative contribution of heat gains to cooling load in this study.An overall energy-efficient shading control metric is proposed and used as basis to develop optimized dynamic shading control strategy.An application example demonstrates that the SGR-Optimal control strategy can further save energy by 21.8%~38.8%when compared to the Rule-based control strategy,thus allowing a better exploration of the energy efficiency potential of daylight measure.展开更多
Steering control for an autonomous underwater glider (AUG) is very challenging due to its changing dynamic char- acteristics such as payload and shape. A good choice to solve this problem is online system identifica...Steering control for an autonomous underwater glider (AUG) is very challenging due to its changing dynamic char- acteristics such as payload and shape. A good choice to solve this problem is online system identification via in-field trials to capture current dynamic characteristics for control law reconfiguration. Hence, an online polynomial estimator is designed to update the yaw dynamic model of the AUG, and an adaptive model predictive control (MPC) controller is used to calculate the optimal control command based on updated estimated parameters. The MPC controller uses a quadratic program (QP) to compute the optimal control command based on a user-defined cost function. The cost function has two terms, focusing on output reference tracking and move suppression of input, respectively. Move-suppression performance can, at some level, represent energy-saving performance of the MPC controller. Users can balance these two competitive control performances by tuning weights. We have compared the control performance using the second-order polynomial model to that using the filth-order polynomial model, and found that the tbrmer cannot capture the main characteristics of yaw dynamics and may result in vibration during the flight. Both processor-in-loop (PIL) simulations and in-lake tests are presented to validate our steering control performance.展开更多
This paper investigates the problem of fuel-efficient and safe control of autonomous vehicle platoons. We present a two-part hierarchical control method that can guarantee platoon stability with minimal fuel consumpti...This paper investigates the problem of fuel-efficient and safe control of autonomous vehicle platoons. We present a two-part hierarchical control method that can guarantee platoon stability with minimal fuel consumption. The first part vehicle controller is derived in the context of receding horizon optimal control by constructing and solving an optimization problem of overall fuel consumption. The Second part platoon controller is a complementation of the first part, which is given on the basis of platoon stability analysis. The effectiveness of the presented platoon control method is demonstrated by both numerical simulations and experiments with laboratory-scale Arduino cars.展开更多
基金The National Basic Research Program of China(973 Program)(No.2009CB320501)the National Natural Science Foundation of China(No.61370209,61272532)the Natural Science Foundation of Jiangsu Province(No.BK2010414,BK2011335)
文摘In order to save the energy and reduce the latency of the end-to-end transmission in mobile ad hoc networks an adaptive and distance-driven power control ADPC scheme is proposed by means of distance research in random geometrics. Through mathematical proof the optimal number of relay nodes and the optimal location of each node for data transmission can be obtained when a distance is given.In the ADPC first the source node computes the optimal number and the sites of the relay nodes between the source and the destination nodes.Then it searches feasible relay nodes around the optimal virtual relay-sites and selects one link with the minimal total transmission energy consumption for data transmission.Simulation results show that the ADPC can reduce both the energy dissipation and the end-to-end latency of the transmission.
基金PhD Programs Foundation of Ministry of Education of China( No.20060255006)Cultivation Fund of the Key Scientific and Technical Innovation Project from Ministry of Education of China (No.706024)
文摘Air conditioning (AC) system is the one with asynchronous and uncertain nature. In this paper, the fuzzy discrete event system (FDES) is introduced to the research of AC energy-saving control. A fuzzy automaton modeling is given for AC energy-saving control and effectiveness optimization is made. To facilitate the implement of the control and energy saving, priorities have been assigned to the major control steps based on logical reasoning. Forward-looking tree modeling based on FDES has been simplified to help further optimization, and a simple and concrete example has been put forward illustrating energy-saving control in AC system.
文摘Energy conservation in homes has become important due to rising energy costs, increasing energy consumption, and a world-wide shift in concerns. This paper discusses an embedded home automation system that provides a method for monitoring and controlling household energy consuming devices. The hardware, software and system interface means utilized for implementation are presented and the particulars of the initial prototype are detailed.
文摘The introduction of daylight can improve buildings’energy efficiency and bring benefit to occupant satisfaction.However,the introduction of daylight may accompany with excessive heat.Properly counterbalancing the energy consumption of air conditioning and lighting systems owing to the entry of daylight is a critical control target of dynamic shading adjustment in cooling season.Most dynamic shading control strategies in use only consider one single system.Additionally,for advanced control mode like performance-based control,the predictive model usually only examines the instantaneous effect of energy performance to determine the shading adjustment state,unable to quantify the overall influence of shading adjustment state on building energy consumption.In order to address this issue,special consideration is given to calculating the cumulative contribution of heat gains to cooling load in this study.An overall energy-efficient shading control metric is proposed and used as basis to develop optimized dynamic shading control strategy.An application example demonstrates that the SGR-Optimal control strategy can further save energy by 21.8%~38.8%when compared to the Rule-based control strategy,thus allowing a better exploration of the energy efficiency potential of daylight measure.
基金supported by Beihang University and Institution of China Academy of Aerospace Aerodynamics
文摘Steering control for an autonomous underwater glider (AUG) is very challenging due to its changing dynamic char- acteristics such as payload and shape. A good choice to solve this problem is online system identification via in-field trials to capture current dynamic characteristics for control law reconfiguration. Hence, an online polynomial estimator is designed to update the yaw dynamic model of the AUG, and an adaptive model predictive control (MPC) controller is used to calculate the optimal control command based on updated estimated parameters. The MPC controller uses a quadratic program (QP) to compute the optimal control command based on a user-defined cost function. The cost function has two terms, focusing on output reference tracking and move suppression of input, respectively. Move-suppression performance can, at some level, represent energy-saving performance of the MPC controller. Users can balance these two competitive control performances by tuning weights. We have compared the control performance using the second-order polynomial model to that using the filth-order polynomial model, and found that the tbrmer cannot capture the main characteristics of yaw dynamics and may result in vibration during the flight. Both processor-in-loop (PIL) simulations and in-lake tests are presented to validate our steering control performance.
基金supported by the National Natural Science Foundation of China(Grant Nos.61273107 and 61573077)Dalian Leading Talent(Grant No.841252)
文摘This paper investigates the problem of fuel-efficient and safe control of autonomous vehicle platoons. We present a two-part hierarchical control method that can guarantee platoon stability with minimal fuel consumption. The first part vehicle controller is derived in the context of receding horizon optimal control by constructing and solving an optimization problem of overall fuel consumption. The Second part platoon controller is a complementation of the first part, which is given on the basis of platoon stability analysis. The effectiveness of the presented platoon control method is demonstrated by both numerical simulations and experiments with laboratory-scale Arduino cars.