The statistical physics properties of low-density parity-cheek codes for the binary symmetric channel are investigated as a spin glass problem with multi-spin interactions and quenched random fields by the cavity meth...The statistical physics properties of low-density parity-cheek codes for the binary symmetric channel are investigated as a spin glass problem with multi-spin interactions and quenched random fields by the cavity method. By evaluating the entropy function at the Nishimori temperature, we find that irregular constructions with heterogeneous degree distribution of check (bit) nodes have higher decoding thresholds compared to regular counterparts with homo- geneous degree distribution. We also show that the instability of the mean-field caiculation takes place only after the entropy crisis, suggesting the presence of a frozen glassy phase at low temperatures. When no prior knowledge of channel noise is assumed (searching for the ground state), we find that a reinforced strategy on normal belief propagation will boost the decoding threshold to a higher value than the normal belief propagation. This value is dose to the dynamicai transition where all local search heuristics fail to identify the true message (codeword or the ferromagnetic state). After the dynamical transition, the number of metastable states with larger energy density (than the ferromagnetic state) becomes exponentially numerous. When the noise level of the transmission channel approaches the static transition point, there starts to exist exponentiaily numerous codewords sharing the identical ferromagnetic energy.展开更多
We investigate the effect of decoherence from a spin environment on the quantum channel capacity.Our results imply that the time evolution of the quantum channel capacity depends on the number of freedom degrees of th...We investigate the effect of decoherence from a spin environment on the quantum channel capacity.Our results imply that the time evolution of the quantum channel capacity depends on the number of freedom degrees of the environment,the tunneling element,the initial state of the environment,and the system-environment coupling strength.From the analysis,we find that the strong tunneling elements and the weak coupling strength can enhance the quantum channel capacity while the environment with a large number of freedom degrees and the strong coupling strength will shrink it.展开更多
A harmonic vortex beam is a typical vector beam with a helical wavefront at harmonic frequencies(e.g.,second and third harmonics). It provides an additional degree of freedom beyond spin-and orbitalangular momentum, w...A harmonic vortex beam is a typical vector beam with a helical wavefront at harmonic frequencies(e.g.,second and third harmonics). It provides an additional degree of freedom beyond spin-and orbitalangular momentum, which may greatly increase the capacity for communicating and encoding information. However, conventional harmonic vortex beam generators suffer from complex designs and a low nonlinear conversion efficiency. Here, we propose and experimentally demonstrate the generation of a large second-harmonic(SH) vortex beam with quasi-nonlinear spin–orbit interaction(SOI). Highquality SH vortex beams with large topological charges up to 28 are realized experimentally. This indicated that the quasi-angular-momentum of a plasmonic spiral phase plate at the excitation wavelength(topological charge, q) could be imprinted on the harmonic signals from the attached WS2 monolayer. The generated harmonic vortex beam has a topological charge of l_(n)= 2 nq(n is the harmonic order). The results may open new avenues for generating harmonic optical vortices for optical communications and enables novel multi-functional hybrid metasurface devices to manipulate harmonic beams.展开更多
基金Supported by the JSPS Fellowship for Foreign Researchers under Grant No.24.02049
文摘The statistical physics properties of low-density parity-cheek codes for the binary symmetric channel are investigated as a spin glass problem with multi-spin interactions and quenched random fields by the cavity method. By evaluating the entropy function at the Nishimori temperature, we find that irregular constructions with heterogeneous degree distribution of check (bit) nodes have higher decoding thresholds compared to regular counterparts with homo- geneous degree distribution. We also show that the instability of the mean-field caiculation takes place only after the entropy crisis, suggesting the presence of a frozen glassy phase at low temperatures. When no prior knowledge of channel noise is assumed (searching for the ground state), we find that a reinforced strategy on normal belief propagation will boost the decoding threshold to a higher value than the normal belief propagation. This value is dose to the dynamicai transition where all local search heuristics fail to identify the true message (codeword or the ferromagnetic state). After the dynamical transition, the number of metastable states with larger energy density (than the ferromagnetic state) becomes exponentially numerous. When the noise level of the transmission channel approaches the static transition point, there starts to exist exponentiaily numerous codewords sharing the identical ferromagnetic energy.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 11105001,11004001,and 10975125
文摘We investigate the effect of decoherence from a spin environment on the quantum channel capacity.Our results imply that the time evolution of the quantum channel capacity depends on the number of freedom degrees of the environment,the tunneling element,the initial state of the environment,and the system-environment coupling strength.From the analysis,we find that the strong tunneling elements and the weak coupling strength can enhance the quantum channel capacity while the environment with a large number of freedom degrees and the strong coupling strength will shrink it.
基金This work was supported by the National Natural Science Foundation of China(91850113,11774115 and 11904271)the National Basic Research Program of China(2014CB921301)the Basic and Applied Basic Research Major Program of Guangdong Province(2019B030302003)。
文摘A harmonic vortex beam is a typical vector beam with a helical wavefront at harmonic frequencies(e.g.,second and third harmonics). It provides an additional degree of freedom beyond spin-and orbitalangular momentum, which may greatly increase the capacity for communicating and encoding information. However, conventional harmonic vortex beam generators suffer from complex designs and a low nonlinear conversion efficiency. Here, we propose and experimentally demonstrate the generation of a large second-harmonic(SH) vortex beam with quasi-nonlinear spin–orbit interaction(SOI). Highquality SH vortex beams with large topological charges up to 28 are realized experimentally. This indicated that the quasi-angular-momentum of a plasmonic spiral phase plate at the excitation wavelength(topological charge, q) could be imprinted on the harmonic signals from the attached WS2 monolayer. The generated harmonic vortex beam has a topological charge of l_(n)= 2 nq(n is the harmonic order). The results may open new avenues for generating harmonic optical vortices for optical communications and enables novel multi-functional hybrid metasurface devices to manipulate harmonic beams.