For the test of rotation speed of high spinning projectile, the general formula of the motional electromotive force (MEMF) of planar magnetic induction coil (PMIC) is derived in case of 3D rotation in a stable mag...For the test of rotation speed of high spinning projectile, the general formula of the motional electromotive force (MEMF) of planar magnetic induction coil (PMIC) is derived in case of 3D rotation in a stable magnetic field. Under a reasona-ble assumption, the MEMF of PMIC is simplified after the aforementioned general formula is used to calculate high spinning PMIC in the geomagnetic field environment. The determination approach of half-cycle is discussed and the method of rotation speed test is studied, and a test is conducted in the paper. The rotation speed curve obtained by the approach in this paper is consistent with the curve by telemetry.展开更多
The spin ladder with Dzyaloshinsky-Moriya interaction is investigated by using the quantum renormalization-group method.The entanglement and fidelity are periodic functions of the time and oscillate between zero and o...The spin ladder with Dzyaloshinsky-Moriya interaction is investigated by using the quantum renormalization-group method.The entanglement and fidelity are periodic functions of the time and oscillate between zero and one.The oscillation period decreases with either the interaction in the spin ladder or the Dzyaloshinsky-Moriya interaction increasing.When the system relates to the environment,both entanglement and fidelity oscillate with a damping rate related to intrinsic decoherence rate,the interaction in the spin ladder,and the Dzyaloshinsky-Moriya interaction.展开更多
We study spin squeezing and classical bifurcation in a nonfinear bipartite system. We show that the spin squeezing can be associated with a fixed-point bifurcation in the classical dynamics, namely, it acts as an indi...We study spin squeezing and classical bifurcation in a nonfinear bipartite system. We show that the spin squeezing can be associated with a fixed-point bifurcation in the classical dynamics, namely, it acts as an indicator of the classical bifurcation. For the ground state of a system with coupled giant spins, we find that the spin squeezing achieves its minimum value near the bifurcation point. We also study the dynamics of the spin squeezing, for an initial state corresponding to one of the fixed point, we find that in the stable regime, the spin squeezing exhibits periodic oscillation and always persists except at some fixed times, while in the unstable regime, the periodic oscillation phenomenon disappears and the spin squeezing survives for a short time. Finally, we show that the mean spin squeezing, which is defined to be averaged over time, attains its minimum value near the bifurcation point.展开更多
基金National Key Lab for Electronic Measurement and Technology,North University of China(No.9140C120401080C12)
文摘For the test of rotation speed of high spinning projectile, the general formula of the motional electromotive force (MEMF) of planar magnetic induction coil (PMIC) is derived in case of 3D rotation in a stable magnetic field. Under a reasona-ble assumption, the MEMF of PMIC is simplified after the aforementioned general formula is used to calculate high spinning PMIC in the geomagnetic field environment. The determination approach of half-cycle is discussed and the method of rotation speed test is studied, and a test is conducted in the paper. The rotation speed curve obtained by the approach in this paper is consistent with the curve by telemetry.
基金Supported by the National Natural Science Foundation of China under Grant No.11074184the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘The spin ladder with Dzyaloshinsky-Moriya interaction is investigated by using the quantum renormalization-group method.The entanglement and fidelity are periodic functions of the time and oscillate between zero and one.The oscillation period decreases with either the interaction in the spin ladder or the Dzyaloshinsky-Moriya interaction increasing.When the system relates to the environment,both entanglement and fidelity oscillate with a damping rate related to intrinsic decoherence rate,the interaction in the spin ladder,and the Dzyaloshinsky-Moriya interaction.
基金Supported by the National Foundation Research Program of China under Grant No. 2012CB921602National Natural Science Foundation of China under Grant Nos. 11025527 and 10935010
文摘We study spin squeezing and classical bifurcation in a nonfinear bipartite system. We show that the spin squeezing can be associated with a fixed-point bifurcation in the classical dynamics, namely, it acts as an indicator of the classical bifurcation. For the ground state of a system with coupled giant spins, we find that the spin squeezing achieves its minimum value near the bifurcation point. We also study the dynamics of the spin squeezing, for an initial state corresponding to one of the fixed point, we find that in the stable regime, the spin squeezing exhibits periodic oscillation and always persists except at some fixed times, while in the unstable regime, the periodic oscillation phenomenon disappears and the spin squeezing survives for a short time. Finally, we show that the mean spin squeezing, which is defined to be averaged over time, attains its minimum value near the bifurcation point.