The equations of state of spin-polarized nuclear matter and pure neutron matter are studied in the framework of the Brueckner–Hartree–Fock theory including a three-body force. The energy per nucleon E<SUB>A<...The equations of state of spin-polarized nuclear matter and pure neutron matter are studied in the framework of the Brueckner–Hartree–Fock theory including a three-body force. The energy per nucleon E<SUB>A</SUB>(δ) calculated in the full range of spin polarization for symmetric nuclear matter and pure neutron matter fulfills a parabolic law. In both the cases the spin-symmetry energy is calculated as a function of the baryonic density along with the related quantities such as the magnetic susceptibility and the Landau parameter G<SUB>0</SUB>. The main effect of the three-body force is to strongly reduce the degenerate Fermi gas magnetic susceptibility even more than the value with only two-body force. The equation of state is monotonically increasing with the density for all spin-aligned configurations studied here so that no any signature is found for a spontaneous transition to a ferromagnetic state.展开更多
基金中国科学院知识创新工程项目,国家重点基础研究发展计划(973计划),the Important Pre-research Project,科技部资助项目
文摘The equations of state of spin-polarized nuclear matter and pure neutron matter are studied in the framework of the Brueckner–Hartree–Fock theory including a three-body force. The energy per nucleon E<SUB>A</SUB>(δ) calculated in the full range of spin polarization for symmetric nuclear matter and pure neutron matter fulfills a parabolic law. In both the cases the spin-symmetry energy is calculated as a function of the baryonic density along with the related quantities such as the magnetic susceptibility and the Landau parameter G<SUB>0</SUB>. The main effect of the three-body force is to strongly reduce the degenerate Fermi gas magnetic susceptibility even more than the value with only two-body force. The equation of state is monotonically increasing with the density for all spin-aligned configurations studied here so that no any signature is found for a spontaneous transition to a ferromagnetic state.