In this paper, we conduct an investigation into magnon self-squeezing states in a ferromagnet. In these states, the quantum fluctuations of the spin components can be lower than the zero-point quantum fluctuations of ...In this paper, we conduct an investigation into magnon self-squeezing states in a ferromagnet. In these states, the quantum fluctuations of the spin components can be lower than the zero-point quantum fluctuations of the coherent states. Through calculating the expectation values of spin fluctuations we gain the condition of achieving magnon self-squeezing. We introduce the mean-field theory for dealing with the nonlinear interaction term of Hamiltonian of magnon system.展开更多
We study theoretically transport properties of two-dimenslonal electron gases through antiparallel magneticelectric barrier structures. Two kinds of magnetic barrier configurations are employed: one is that the stren...We study theoretically transport properties of two-dimenslonal electron gases through antiparallel magneticelectric barrier structures. Two kinds of magnetic barrier configurations are employed: one is that the strength of the double δ-functlon in opposite directions is equal and the other is that the strength is unequal Similarities and differences of electronic transports are presented. It is found that the transmission and the conductance depend strongly on the shape of the magnetic barrier and the height of the electric harrier. The results indicate that this system does not possess any spin filtering and spin polarization and electron gases can realize perfect resonant tunneling and wave-vector filtering properties. Moreover, the strength of the effect of the inhomogeneous magnetic field on the transport properties is discussed.展开更多
Starting from the governing equations for a quantum magnetoplasma including the electron spin -1/2 effects and quantum Bohm potential, we derive Korteweg-de Vries (KdV) equation of the system of quantum magneto- hyd...Starting from the governing equations for a quantum magnetoplasma including the electron spin -1/2 effects and quantum Bohm potential, we derive Korteweg-de Vries (KdV) equation of the system of quantum magneto- hydrodynamics (QMHD). The amplitude and width of magnetosonic soliton with different parameters in the system are studied. It is found that the normalized Zeeman energy E plays a crucial role, for E ≥ 1 the amplitude τmξ and the width we of solitary wave all decrease as E increases. That is, the introduction of spin quantum force modifies the shape of solitary magnetosonic waves and makes them more narrower and shallower.展开更多
We report a theoretical study on producing electrically spin-polarized current in the Rashba ring with parallel double dots embedded, which are subject to two time-dependent microwave fields. By means of the Keldysh G...We report a theoretical study on producing electrically spin-polarized current in the Rashba ring with parallel double dots embedded, which are subject to two time-dependent microwave fields. By means of the Keldysh Green's function method, we present an analytic result of the pumped current at adiabatic limit and demonstrate that the interplay between the quantum pumping effect and spin-dependent quantum interference can lead to an arbitrarily controllable spin-polarized current in the device. The magnitude and direction of the charge and spin current can be effectively modulated by system parameters such as the pumping phase difference, Rashba precession phase, and the dynamic phase difference of electron traveling in two arms of ring; moreover, the spin-polarization degree of the charge current can also be tuned in the range [-∞, +∞]. Our findings may shed light on the all-electric way to produce the controllable spin-polarized charge current in the field of spintronics.展开更多
We investigate the quantum interference of spin wave excitations of a spin-1 atomic Bose condensate confined in an optical lattice. Single-channel and dual-channel interactions are employed in our system, and their in...We investigate the quantum interference of spin wave excitations of a spin-1 atomic Bose condensate confined in an optical lattice. Single-channel and dual-channel interactions are employed in our system, and their induced excitations are compared. Also we consider the interplay of magneto-optical excitations, which leads to a constructive or destructive effect for the creation of magnons based on background excitations. The population distributions of excited magnons can be well controlled by steering the long-range dipole-dipole interactions. Such a scheme can be used to demonstrate conventional quantum-optical phenomena like dynamical Casimir effect at finite temperatures.展开更多
基金The project supported by National Natural Science Foundation of China under Grant Nos .19847004 and 10474025
文摘In this paper, we conduct an investigation into magnon self-squeezing states in a ferromagnet. In these states, the quantum fluctuations of the spin components can be lower than the zero-point quantum fluctuations of the coherent states. Through calculating the expectation values of spin fluctuations we gain the condition of achieving magnon self-squeezing. We introduce the mean-field theory for dealing with the nonlinear interaction term of Hamiltonian of magnon system.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 19847004 and 10474025.
文摘We study theoretically transport properties of two-dimenslonal electron gases through antiparallel magneticelectric barrier structures. Two kinds of magnetic barrier configurations are employed: one is that the strength of the double δ-functlon in opposite directions is equal and the other is that the strength is unequal Similarities and differences of electronic transports are presented. It is found that the transmission and the conductance depend strongly on the shape of the magnetic barrier and the height of the electric harrier. The results indicate that this system does not possess any spin filtering and spin polarization and electron gases can realize perfect resonant tunneling and wave-vector filtering properties. Moreover, the strength of the effect of the inhomogeneous magnetic field on the transport properties is discussed.
基金Supported by the National Natural Science Foundation of China under Grant No.10875098the Natural Science Foundation of Northwest Normal University under Grant No.NWNU-KJCXGC-03-48
文摘Starting from the governing equations for a quantum magnetoplasma including the electron spin -1/2 effects and quantum Bohm potential, we derive Korteweg-de Vries (KdV) equation of the system of quantum magneto- hydrodynamics (QMHD). The amplitude and width of magnetosonic soliton with different parameters in the system are studied. It is found that the normalized Zeeman energy E plays a crucial role, for E ≥ 1 the amplitude τmξ and the width we of solitary wave all decrease as E increases. That is, the introduction of spin quantum force modifies the shape of solitary magnetosonic waves and makes them more narrower and shallower.
基金Supported by National Natural Science Foundation of China under Grant Nos.110704032 and 110704033the Natural Science Foundation of JiangSu Province under Grant No.BK2010416
文摘We report a theoretical study on producing electrically spin-polarized current in the Rashba ring with parallel double dots embedded, which are subject to two time-dependent microwave fields. By means of the Keldysh Green's function method, we present an analytic result of the pumped current at adiabatic limit and demonstrate that the interplay between the quantum pumping effect and spin-dependent quantum interference can lead to an arbitrarily controllable spin-polarized current in the device. The magnitude and direction of the charge and spin current can be effectively modulated by system parameters such as the pumping phase difference, Rashba precession phase, and the dynamic phase difference of electron traveling in two arms of ring; moreover, the spin-polarization degree of the charge current can also be tuned in the range [-∞, +∞]. Our findings may shed light on the all-electric way to produce the controllable spin-polarized charge current in the field of spintronics.
基金Supported by the National Basic Research Program of China (973 Program) under Grant No. 2011CB921604+4 种基金the National Natural Science Foundation of China under Grant Nos. 11004057, 10828408Educational Commission of Henan Province of China under Grant No. 01026631082the “Chen Guang” Project Supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation under Grant No.10CG24
文摘We investigate the quantum interference of spin wave excitations of a spin-1 atomic Bose condensate confined in an optical lattice. Single-channel and dual-channel interactions are employed in our system, and their induced excitations are compared. Also we consider the interplay of magneto-optical excitations, which leads to a constructive or destructive effect for the creation of magnons based on background excitations. The population distributions of excited magnons can be well controlled by steering the long-range dipole-dipole interactions. Such a scheme can be used to demonstrate conventional quantum-optical phenomena like dynamical Casimir effect at finite temperatures.