期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
度量算符对Gauss编织态作用的期望值
1
作者 龙芸 《华中师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第2期149-151,共3页
圈量子引力是主要的候选量子引力理论,考虑它和经典极限对应的连续极限是非常有趣的,Gauss编织态描述了一个半经典图景.本文计算了度量算符对Gauss编织态作用的表示矩阵元及其期望值,并且在该态的峰值区(p=1)、内腿颜色k=0的情况下,给出... 圈量子引力是主要的候选量子引力理论,考虑它和经典极限对应的连续极限是非常有趣的,Gauss编织态描述了一个半经典图景.本文计算了度量算符对Gauss编织态作用的表示矩阵元及其期望值,并且在该态的峰值区(p=1)、内腿颜色k=0的情况下,给出Gauss编织态顶角处毗邻的4切矢量间的夹角以及切矢量的长度. 展开更多
关键词 度量算符 Gauss编织 自旋网态
下载PDF
由重耦理论得到面积的完备本征谱
2
作者 龙芸 《湖北大学学报(自然科学版)》 CAS 北大核心 2011年第2期143-145,共3页
介绍量子引力圈表象中关于面积算符定义的一种归一化方法,运用T-L重耦理论的图形表示,计算面积算符的完备本征谱,并讨论面积谱的面积间隙(最小非零本征值).
关键词 面积算符 自旋网态 重耦理论 完备谱
下载PDF
体积算符对顶角作用的重耦矩阵 被引量:1
3
作者 邵丹 邵亮 +1 位作者 邵常贵 陈贻汉 《高能物理与核物理》 CSCD 北大核心 2004年第3期254-257,共4页
用重耦理论的图形计算法 。
关键词 体积算符 重耦矩阵 自旋 n价顶角 自旋角动量 量子引力
原文传递
Quantum Communication Through a Two-Dimensional Spin Network
4
作者 王兆明 顾永建 《Communications in Theoretical Physics》 SCIE CAS CSCD 2012年第12期835-839,共5页
We investigate the state or entanglement transfer through a two-dimensional spin network. We show that for state transfer, better fidelity can be gained along the diagonal direction but for entanglement transfer, when... We investigate the state or entanglement transfer through a two-dimensional spin network. We show that for state transfer, better fidelity can be gained along the diagonal direction but for entanglement transfer, when the initial entanglement is created along the boundary, the concurrence is more inclined to propagate along the boundary. This behavior is produced by quantum mechanical interference and the communication quality depends on the precise size of the network. For some number of sites, the fidelity in a two-dimensional channel is higher than one-dimensional case. This is an important result for realizing quantum communication through high dimension spin chain networks. 展开更多
关键词 quantum state transfer spin networks entanglement transfer
原文传递
Perfect Single Qubit Mirroring Effects on Two and Three Maximally Entangled Qubits
5
作者 M.Avila 《Communications in Theoretical Physics》 SCIE CAS CSCD 2013年第1期7-10,共4页
Perfect quantum state mirroring in a chain of N spins is defined as the condition in which the state 丨i 丨of the chain is swapped into the state 丨N - i丨 within a time evolution interval r. Such a phenomenon is an i... Perfect quantum state mirroring in a chain of N spins is defined as the condition in which the state 丨i 丨of the chain is swapped into the state 丨N - i丨 within a time evolution interval r. Such a phenomenon is an interesting way of transfering entanglement. An expressions for the perfect mirroring of a single qubit contained in a spin chain were proposed in the past. We exploit such an expressions for calculating the evolution times in chains of both two and three spins. In the case of a chain of two qubits, we derive conditions under which the associated four Bell states diagonalize the Hamiltonian. It is found that for the two Bell states 丨Ф+) and 丨Ф-), perfect mirroring does not occur (i.e. entanglement is not preserved under swapping). On the other hand, perfect single qubit mirror effect (entanglement preservation) indeed occurs for the other two Bell states 丨ψ+) and 丨ψ-) which are mapped into 丨Ф+) and 丨Ф-) respectively. For the case of a chain of three qubits, the effects of a perfect single qubit mirroring on a set of four maximally entangled three qubit states ψl, ψ2, X1, and X2are studied. Due to the fact that quantum mirroring preserves maximal entanglement, the states ψ1 and ψ2 are not altered. However, quantum mirroring changes the states X1 and X2 only if we apply perfect quantum state mirroring in the site a = 1 of the three qubits spin chain. The above constrains the preservation of maximal entanglement under qubit mirroring of such a state. Due to the fact that swapping has already been experimentally tested, a posible, experimental implementations of single qubit mirroring is possible. 展开更多
关键词 time evolution of a state perfect quantum state mirroring of a single qubit Bell states Gisinstates quantum mirroring of Bell states quantum mirroring of Gisin states entanglement preset-vation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部