A set of absolute geostrophic current(AGC) data for the period January 2004 to December 2012 are calculated using the P-vector method based on monthly gridded Argo profi les in the world tropical oceans. The AGCs agre...A set of absolute geostrophic current(AGC) data for the period January 2004 to December 2012 are calculated using the P-vector method based on monthly gridded Argo profi les in the world tropical oceans. The AGCs agree well with altimeter geostrophic currents, Ocean Surface Current Analysis-Real time currents, and moored current-meter measurements at 10-m depth, based on which the classical Sverdrup circulation theory is evaluated. Calculations have shown that errors of wind stress calculation, AGC transport, and depth ranges of vertical integration cannot explain non-Sverdrup transport, which is mainly in the subtropical western ocean basins and equatorial currents near the Equator in each ocean basin(except the North Indian Ocean, where the circulation is dominated by monsoons). The identifi ed nonSverdrup transport is thereby robust and attributed to the joint effect of baroclinicity and relief of the bottom(JEBAR) and mesoscale eddy nonlinearity.展开更多
CFD models have been developed to investigate the Iongwall goaf gas flow patternsunder different mining and geological control conditions.The Iongwall goaf wastreated as porous regions and gas flow was modelled as a m...CFD models have been developed to investigate the Iongwall goaf gas flow patternsunder different mining and geological control conditions.The Iongwall goaf wastreated as porous regions and gas flow was modelled as a momentum sink added to themomentum equation.Gas desorption from the caved goaf and destressed coal seamswithin the mining disturbed area was modelled as additional mass sources in the continuityequation.These CFD models were developed according to specific Iongwall layoutsand calibrated against field monitoring data.Two case studies were presented demonstratingthe application of CFD modelling of goaf gas flow characteristics for improved goafgas capture and the reduction of oxygen ingress into the goaf areas for self-heating prevention.Results from the case studies indicate that the optimum goaf drainage strategywould be a combination of shallow (near the face) and deep holes to improve the overalldrainage efficiency and gas purity.For gassy Iongwall faces retreating against the seam dip,it is recommended to conduct cross-measure roof hole drainage targeting the fracturedzones overlying the return corner,rather than high capacity surface goaf drainage deep inthe goaf.展开更多
Corrosion products of structural materials when contained in water usually are in two states:soluble state and colloidal particles with diameter about 10^(-3)—10^(-1)μm.Deposits of such corrosion products on tube su...Corrosion products of structural materials when contained in water usually are in two states:soluble state and colloidal particles with diameter about 10^(-3)—10^(-1)μm.Deposits of such corrosion products on tube surfaces under high pressure will jeopardize the operating economy of power plant equipment and even result in accidents. A numerical study is reported in this paper of the natural convective heat and mass transfer on a vertical heated plate subject to the first or mixed kind of boundary conditions for high-pressure water(P=17MPa)containing metal corrosion products with consideration of variable thermophysical properties.展开更多
Natural convection heat transfer in eccentric annuli made of two isothermal horizontal circular cylinders is numerically investigated. Bipolar coordinates are used for the eccentric annuli. The governingequations are ...Natural convection heat transfer in eccentric annuli made of two isothermal horizontal circular cylinders is numerically investigated. Bipolar coordinates are used for the eccentric annuli. The governingequations are transformed into finite difference equations (FDE) by the central difference approach.Heat transfer and flow convection pattern results are simulated for 5.0≤RaL≤1.0×105, withPr = 0.3 - 100, Do/Di = 1.25 - 5.0, andε= 0.01-0.95. The axis of the inner cylinder lies onan inclined plane with θp= 0°- 180°.A Mach-Zehnder interferometer is used for the experimentalstudy. The range is for RaL = 5.3×102-2.41×104, with Do/Di = 2.0, 2.5 and 3.125,ε= 0.0-0.85,and θp= 0°-180°.Air is used as the medium. Comparison of the numerical results with the experimental data shows good agreement.展开更多
基金Supported by the National Basic Research Program of China(973 Program)(No.2012CB956001)the CMA(No.GYHY201306018)+2 种基金the Chinese Academy of Sciences(CAS)(No.XDA11010301)the National Natural Science Foundation of China(Nos.41176019,41421005,U1406401)the State Oceanic Administration(SOA)(No.GASI-03-01-01-05)
文摘A set of absolute geostrophic current(AGC) data for the period January 2004 to December 2012 are calculated using the P-vector method based on monthly gridded Argo profi les in the world tropical oceans. The AGCs agree well with altimeter geostrophic currents, Ocean Surface Current Analysis-Real time currents, and moored current-meter measurements at 10-m depth, based on which the classical Sverdrup circulation theory is evaluated. Calculations have shown that errors of wind stress calculation, AGC transport, and depth ranges of vertical integration cannot explain non-Sverdrup transport, which is mainly in the subtropical western ocean basins and equatorial currents near the Equator in each ocean basin(except the North Indian Ocean, where the circulation is dominated by monsoons). The identifi ed nonSverdrup transport is thereby robust and attributed to the joint effect of baroclinicity and relief of the bottom(JEBAR) and mesoscale eddy nonlinearity.
文摘CFD models have been developed to investigate the Iongwall goaf gas flow patternsunder different mining and geological control conditions.The Iongwall goaf wastreated as porous regions and gas flow was modelled as a momentum sink added to themomentum equation.Gas desorption from the caved goaf and destressed coal seamswithin the mining disturbed area was modelled as additional mass sources in the continuityequation.These CFD models were developed according to specific Iongwall layoutsand calibrated against field monitoring data.Two case studies were presented demonstratingthe application of CFD modelling of goaf gas flow characteristics for improved goafgas capture and the reduction of oxygen ingress into the goaf areas for self-heating prevention.Results from the case studies indicate that the optimum goaf drainage strategywould be a combination of shallow (near the face) and deep holes to improve the overalldrainage efficiency and gas purity.For gassy Iongwall faces retreating against the seam dip,it is recommended to conduct cross-measure roof hole drainage targeting the fracturedzones overlying the return corner,rather than high capacity surface goaf drainage deep inthe goaf.
文摘Corrosion products of structural materials when contained in water usually are in two states:soluble state and colloidal particles with diameter about 10^(-3)—10^(-1)μm.Deposits of such corrosion products on tube surfaces under high pressure will jeopardize the operating economy of power plant equipment and even result in accidents. A numerical study is reported in this paper of the natural convective heat and mass transfer on a vertical heated plate subject to the first or mixed kind of boundary conditions for high-pressure water(P=17MPa)containing metal corrosion products with consideration of variable thermophysical properties.
文摘Natural convection heat transfer in eccentric annuli made of two isothermal horizontal circular cylinders is numerically investigated. Bipolar coordinates are used for the eccentric annuli. The governingequations are transformed into finite difference equations (FDE) by the central difference approach.Heat transfer and flow convection pattern results are simulated for 5.0≤RaL≤1.0×105, withPr = 0.3 - 100, Do/Di = 1.25 - 5.0, andε= 0.01-0.95. The axis of the inner cylinder lies onan inclined plane with θp= 0°- 180°.A Mach-Zehnder interferometer is used for the experimentalstudy. The range is for RaL = 5.3×102-2.41×104, with Do/Di = 2.0, 2.5 and 3.125,ε= 0.0-0.85,and θp= 0°-180°.Air is used as the medium. Comparison of the numerical results with the experimental data shows good agreement.