含van der Pol型自激项的单摆系统是典型的自激机械系统,本文研究了该系统的张弛振荡特性.首先通过引入新的时间尺度和变量,把原系统表示成标准的快慢系统.然后基于几何奇异摄动理论,求得系统的慢变流形及其结构,从而证明了张弛振荡解...含van der Pol型自激项的单摆系统是典型的自激机械系统,本文研究了该系统的张弛振荡特性.首先通过引入新的时间尺度和变量,把原系统表示成标准的快慢系统.然后基于几何奇异摄动理论,求得系统的慢变流形及其结构,从而证明了张弛振荡解的存在性,并进一步求得了张弛振荡解及其周期的近似表达式.理论结果表明,发生张弛振荡时,单摆快速通过其平衡位置,而在远离平衡位置的一段区域上停留较长时间,且存在两个分界点把快速运动和慢速运动分隔开.数值算例证明了理论分析的正确性.展开更多
文摘含van der Pol型自激项的单摆系统是典型的自激机械系统,本文研究了该系统的张弛振荡特性.首先通过引入新的时间尺度和变量,把原系统表示成标准的快慢系统.然后基于几何奇异摄动理论,求得系统的慢变流形及其结构,从而证明了张弛振荡解的存在性,并进一步求得了张弛振荡解及其周期的近似表达式.理论结果表明,发生张弛振荡时,单摆快速通过其平衡位置,而在远离平衡位置的一段区域上停留较长时间,且存在两个分界点把快速运动和慢速运动分隔开.数值算例证明了理论分析的正确性.