For calculating the thermal storage time for an annular tube with phase change material (PCM), a novel method is proposed. The method is suitable for either low-temperature PCM or high-temperature PCM whose initial ...For calculating the thermal storage time for an annular tube with phase change material (PCM), a novel method is proposed. The method is suitable for either low-temperature PCM or high-temperature PCM whose initial temperature is near the melting point. The deviation fit is smaller than 8% when the time is below 2x104 s. Comparison between the predictions and the reported experimental data of thermal storage time at same conditions is investigated and good agreements have been got. Based on this method, the performance of the thermal storage unit and the role of natural convection are also investigated. Results show a linear relation between the maximum amount of stored heat and thermal storage time, and their ratio increases with the height of the thermal storage unit. As the thickness of the cavity increases, natural convection plays an increasingly important role in promoting the melting behavior of paraffin. When the thickness of the cavity is small, natural convection restrains the melting behavior of paraffin.展开更多
The dynamic recrystallization(DRX) process of hot compressed aluminium alloy 7050 was predicted using cellular automaton(CA) combined with topology deformation. The hot deformatation characteristics of aluminium alloy...The dynamic recrystallization(DRX) process of hot compressed aluminium alloy 7050 was predicted using cellular automaton(CA) combined with topology deformation. The hot deformatation characteristics of aluminium alloy 7050 were investigated by hot uniaxial compression tests in order to obtain the material parameters used in the CA model. The influences of process parameters(strain, strain rate and temperature) on the fraction of DRX and the average recrystallization grain(R-grain) size were investigated and discussed. It is found that larger stain, higher temperature and lower strain rate(less than 0.1 s^(–1)) are beneficial to the increasing fraction of DRX. And the deformation temperature affects the mean R-grain size much more greatly than other parameters. It is also noted that there is a critical strain for the occurrence of DRX which is related to strain rate and temperature. In addition, it is shown that the CA model with topology deformation is able to simulate the microstructural evolution and the flow behavior of aluminium alloy 7050 material under various deformation conditions.展开更多
CFD models have been developed to investigate the Iongwall goaf gas flow patternsunder different mining and geological control conditions.The Iongwall goaf wastreated as porous regions and gas flow was modelled as a m...CFD models have been developed to investigate the Iongwall goaf gas flow patternsunder different mining and geological control conditions.The Iongwall goaf wastreated as porous regions and gas flow was modelled as a momentum sink added to themomentum equation.Gas desorption from the caved goaf and destressed coal seamswithin the mining disturbed area was modelled as additional mass sources in the continuityequation.These CFD models were developed according to specific Iongwall layoutsand calibrated against field monitoring data.Two case studies were presented demonstratingthe application of CFD modelling of goaf gas flow characteristics for improved goafgas capture and the reduction of oxygen ingress into the goaf areas for self-heating prevention.Results from the case studies indicate that the optimum goaf drainage strategywould be a combination of shallow (near the face) and deep holes to improve the overalldrainage efficiency and gas purity.For gassy Iongwall faces retreating against the seam dip,it is recommended to conduct cross-measure roof hole drainage targeting the fracturedzones overlying the return corner,rather than high capacity surface goaf drainage deep inthe goaf.展开更多
The spin-3/2 B1ume-Capel model is studied using the heating and cooling algorithms improved from the Creutz cellular automaton (CCA). The calculations are done on various sizes of the simple cubic lattice in the 0 ...The spin-3/2 B1ume-Capel model is studied using the heating and cooling algorithms improved from the Creutz cellular automaton (CCA). The calculations are done on various sizes of the simple cubic lattice in the 0 ≤ D/J ≤ 5 parameter region. The phase diagram of the model and temperature variation of the thermodynamic quantities are obtained. We confirm the existence of a critical end point within the heating calculations. However, in contrast to the heating calculations, we do not obtain the first-order line at low temperature with cooling algorithm calculations. The results are compared with those of other theories.展开更多
Adaptive models are based on the observation that there are some actions that people can and actually do take to achieve thermal comfort. Studies regarding thermal comfort conditions in economical dwellings were carri...Adaptive models are based on the observation that there are some actions that people can and actually do take to achieve thermal comfort. Studies regarding thermal comfort conditions in economical dwellings were carried out simultaneously in seven Mexican cities, corresponding to warm dry and warm humid climates. In this article, case studies of low-cost dwellings in the city of Hermosillo (in northwest Mexico), are presented and analyzed. Field surveys were carried out to obtain information about the physical characteristics of the dwellings and their occupants, as well as the indoor thermal environment. Neutral temperature was obtained from the applied survey. The high neutral temperature reveals the effect of inhabitants' adaptation mechanism to extreme climates. Occupant comfort votes as a function of indoor air temperatures were analyzed, and different characteristics such as age, size and gender were evaluated separately. The results show the variability of the neutral temperature and the tolerance to temperature changes, depending on the population's specific characteristics. In many cases where the population does not have access to artificial acclimatization devices, the neutral temperature values for specific climates and people can inform architects when choosing the most suitable thermal strategies for building design.展开更多
Solidification structure is critical in the control of the mechanical properties and quality during the continuous casting process. The thermo-physical properties of 13 Cr steel added some rare metals, such as Mo, V, ...Solidification structure is critical in the control of the mechanical properties and quality during the continuous casting process. The thermo-physical properties of 13 Cr steel added some rare metals, such as Mo, V, Nb, are measured to better understand the solidification structure of 13 Cr bloom. A computational model using CA-FE(cellular automation-finite element) method coupled with heat transfer model is developed to describe the solidification structure in continuous casting process. It is found that the calculated solidification structure is in good agreement with the observed data. The influence of casting speed and superheat on the solidification structure of the bloom is studied in detail. In order to obtain more equiaxed crystal ratio and low degree of the segregation in the bloom, the optimized casting speed 0.6 m/min and superheat less than 25 °C are determined for the caster. Using the optimized manufacturing parameters, these samples are 60% with the equiaxed zone ratio of 8%–10% and below the degree of segregation 1.05.展开更多
In this paper we present a stochastic model for daily average temperature to calculate the temperature indices upon which temperature-based derivatives are written. We propose a seasonal mean and volatility model that...In this paper we present a stochastic model for daily average temperature to calculate the temperature indices upon which temperature-based derivatives are written. We propose a seasonal mean and volatility model that describes the daily average temperature behavior using the mean-reverting Ornstein-Uhlenbeck process. We also use higher order continuous-time autoregressive process with lag 3 for modeling the time evolution of the temperatures after removing trend and seasonality. Our model is fitted to 11 years of data recorded, in the period 1 January 2005 to 31 December 2015, Bahir Dar, Ethiopia, obtained from Ethiopia National Meteorological Services Agency. The analytical approximation formulas are used to price heating degree days(HDD) and cooling degree days(CDD) futures. The suggested model is analytically tractable for derivation of explicit prices for CDD and HDD futures and option. The price of the CDD future is calculated, using analytical approximation formulas. Numerical examples are presented to indicate the accuracy of the method. The results show that our model performs better to predict CDD indices.展开更多
In this paper,we have investigated the effect of Calogero-Moser type interaction on the quantum discord of thermal states of a spin chain.Our results imply that the quantum discord depends on the relative distance bet...In this paper,we have investigated the effect of Calogero-Moser type interaction on the quantum discord of thermal states of a spin chain.Our results imply that the quantum discord depends on the relative distance between the spins,the external magnetic field,and the temperature.By a comparison between the quantum discord and the entanglement of formation,the quantum discord is more robust than the entanglement of formation in the sense that the latter takes a zero value in a large range of the parameters,while the former takes a nonzero value.展开更多
For β∈ R,the authors consider the evolution system in the unknown variables u and ααttu+αxxxxu+αxxtα-(β+αxu L22)αxxu=f,αttα-αxxα-αxxtα-αxxtu=0 describing the dynamics of type III thermoelastic extensi...For β∈ R,the authors consider the evolution system in the unknown variables u and ααttu+αxxxxu+αxxtα-(β+αxu L22)αxxu=f,αttα-αxxα-αxxtα-αxxtu=0 describing the dynamics of type III thermoelastic extensible beams,where the dissipation is entirely contributed by the second equation ruling the evolution of the thermal displacement α.Under natural boundary conditions,the existence of the global attractor of optimal regularity for the related dynamical system acting on the phase space of weak energy solutions is established.展开更多
We study thermal spin squeezing (TSS) and thermal global entanglement (TGE) in a general Heisenberg spin chain, in the presence of Dzyaloshinskii-Moriya interaction and an external magnetic field. We derive an inequal...We study thermal spin squeezing (TSS) and thermal global entanglement (TGE) in a general Heisenberg spin chain, in the presence of Dzyaloshinskii-Moriya interaction and an external magnetic field. We derive an inequality associating the squeezing parameter and the global concurrence, which establishes (TSS) as a signature of (TGE). The inequality reduces to equality for particular symmetric chains which also associates TSS with bipartite entanglement in such systems. We also check the results by presenting two numerical examples.展开更多
In this paper, the lowtemperature properties of the spin1 twodimensionM frustrated Heisenberg antifer romagnet with the singleion anisotropy are investigated on a square lattice by using the spinwave theory. The influ...In this paper, the lowtemperature properties of the spin1 twodimensionM frustrated Heisenberg antifer romagnet with the singleion anisotropy are investigated on a square lattice by using the spinwave theory. The influence of the frustration and anisotropy is found in the thermodynamics of the model, such as the temperature dependence of the staggered magnetization and specific heat. For some selected values of the frustration and anisotropy parameters, the results for the specific heat are compared with those of existing theories and numerical estimates. Within a spinwave analysis, we have found the evidence for an intermediate magnetically disorder phase to separate the Nel and collinear phases.展开更多
A new model of a quantum heat engine (QHE) cycle is established, in which the working substance consists of an interacting electrons system. One of our purposes is to test the validity of the second law of thermodyn...A new model of a quantum heat engine (QHE) cycle is established, in which the working substance consists of an interacting electrons system. One of our purposes is to test the validity of the second law of thermodynamics by this model, which is more general than the spin-1/2 antiferromagnetic Heisenberg model since it would recover the spin model when the on-site Coulomb interaction U is strong enough. On the basis of quantum mechanics and the first law of thermodynamics, we show no violation of the second law of thermodynamics during the cycle. We further study the performance characteristics of the cycle by investigating in detail the optimal relations of efficiency and dimensionless power output. We find that the efficiency of our engine can be expressed as η = t22/t21 in the large-U limit, which is valid even for a four sites QHE.展开更多
Small reactors have become a new hotspot of international nuclear energy research.The nuclear heating reactor(NHR)technology developed by Tsinghua University is an important multipurpose small reactor solution with fe...Small reactors have become a new hotspot of international nuclear energy research.The nuclear heating reactor(NHR)technology developed by Tsinghua University is an important multipurpose small reactor solution with features such as high integration,modular design and full power natural circulation.A new small reactor based on the existing NHR-200 reactor was developed by the Institute of Nuclear and New Energy Technology of Tsinghua University.A full-scale natural circulation test loop with the same operating parameters as the actual reactor was built in order to experimentally validate the natural circulation ability of the reactor primary loop and heat-transfer ability of fuel assemblies and heat exchangers.Corresponding results are given in detail,including parameter validation of the reactor primary loop,flow rules of the natural circulation and heat-transfer coefficients of heaters and heat exchangers,which can be directly used in the actual reactor as a reference for optimization design.Finally,a characteristic parameter k is proposed to represent the natural circulation ability of a system.By using the new data arrangement method in the form of parameter k,comprehensive experimental results of the natural circulation can be represented by a simple integrated expression.The work in this paper is of importance in broadening application fields and pushing forward commercialization of the NHR type reactors.展开更多
基金Projects(51666006,51406071,51174105,51366005)supported by the National Natural Science Foundation of ChinaProject(2014CB460605)supported by the National Basic Research Program of China
文摘For calculating the thermal storage time for an annular tube with phase change material (PCM), a novel method is proposed. The method is suitable for either low-temperature PCM or high-temperature PCM whose initial temperature is near the melting point. The deviation fit is smaller than 8% when the time is below 2x104 s. Comparison between the predictions and the reported experimental data of thermal storage time at same conditions is investigated and good agreements have been got. Based on this method, the performance of the thermal storage unit and the role of natural convection are also investigated. Results show a linear relation between the maximum amount of stored heat and thermal storage time, and their ratio increases with the height of the thermal storage unit. As the thickness of the cavity increases, natural convection plays an increasingly important role in promoting the melting behavior of paraffin. When the thickness of the cavity is small, natural convection restrains the melting behavior of paraffin.
基金Project(2012ZX04010-8)supported by National Key Technology R&D Program of China
文摘The dynamic recrystallization(DRX) process of hot compressed aluminium alloy 7050 was predicted using cellular automaton(CA) combined with topology deformation. The hot deformatation characteristics of aluminium alloy 7050 were investigated by hot uniaxial compression tests in order to obtain the material parameters used in the CA model. The influences of process parameters(strain, strain rate and temperature) on the fraction of DRX and the average recrystallization grain(R-grain) size were investigated and discussed. It is found that larger stain, higher temperature and lower strain rate(less than 0.1 s^(–1)) are beneficial to the increasing fraction of DRX. And the deformation temperature affects the mean R-grain size much more greatly than other parameters. It is also noted that there is a critical strain for the occurrence of DRX which is related to strain rate and temperature. In addition, it is shown that the CA model with topology deformation is able to simulate the microstructural evolution and the flow behavior of aluminium alloy 7050 material under various deformation conditions.
文摘CFD models have been developed to investigate the Iongwall goaf gas flow patternsunder different mining and geological control conditions.The Iongwall goaf wastreated as porous regions and gas flow was modelled as a momentum sink added to themomentum equation.Gas desorption from the caved goaf and destressed coal seamswithin the mining disturbed area was modelled as additional mass sources in the continuityequation.These CFD models were developed according to specific Iongwall layoutsand calibrated against field monitoring data.Two case studies were presented demonstratingthe application of CFD modelling of goaf gas flow characteristics for improved goafgas capture and the reduction of oxygen ingress into the goaf areas for self-heating prevention.Results from the case studies indicate that the optimum goaf drainage strategywould be a combination of shallow (near the face) and deep holes to improve the overalldrainage efficiency and gas purity.For gassy Iongwall faces retreating against the seam dip,it is recommended to conduct cross-measure roof hole drainage targeting the fracturedzones overlying the return corner,rather than high capacity surface goaf drainage deep inthe goaf.
基金Supported by the Scientific and Technological Research Council of Turkey (TBITAK) under Grant No. 109T018
文摘The spin-3/2 B1ume-Capel model is studied using the heating and cooling algorithms improved from the Creutz cellular automaton (CCA). The calculations are done on various sizes of the simple cubic lattice in the 0 ≤ D/J ≤ 5 parameter region. The phase diagram of the model and temperature variation of the thermodynamic quantities are obtained. We confirm the existence of a critical end point within the heating calculations. However, in contrast to the heating calculations, we do not obtain the first-order line at low temperature with cooling algorithm calculations. The results are compared with those of other theories.
文摘Adaptive models are based on the observation that there are some actions that people can and actually do take to achieve thermal comfort. Studies regarding thermal comfort conditions in economical dwellings were carried out simultaneously in seven Mexican cities, corresponding to warm dry and warm humid climates. In this article, case studies of low-cost dwellings in the city of Hermosillo (in northwest Mexico), are presented and analyzed. Field surveys were carried out to obtain information about the physical characteristics of the dwellings and their occupants, as well as the indoor thermal environment. Neutral temperature was obtained from the applied survey. The high neutral temperature reveals the effect of inhabitants' adaptation mechanism to extreme climates. Occupant comfort votes as a function of indoor air temperatures were analyzed, and different characteristics such as age, size and gender were evaluated separately. The results show the variability of the neutral temperature and the tolerance to temperature changes, depending on the population's specific characteristics. In many cases where the population does not have access to artificial acclimatization devices, the neutral temperature values for specific climates and people can inform architects when choosing the most suitable thermal strategies for building design.
基金Projects(51274057,51474057) supported by the National Natural Science Foundation of ChinaProject(2012AA03A508) supported by the High-tech Research and Development Program of China
文摘Solidification structure is critical in the control of the mechanical properties and quality during the continuous casting process. The thermo-physical properties of 13 Cr steel added some rare metals, such as Mo, V, Nb, are measured to better understand the solidification structure of 13 Cr bloom. A computational model using CA-FE(cellular automation-finite element) method coupled with heat transfer model is developed to describe the solidification structure in continuous casting process. It is found that the calculated solidification structure is in good agreement with the observed data. The influence of casting speed and superheat on the solidification structure of the bloom is studied in detail. In order to obtain more equiaxed crystal ratio and low degree of the segregation in the bloom, the optimized casting speed 0.6 m/min and superheat less than 25 °C are determined for the caster. Using the optimized manufacturing parameters, these samples are 60% with the equiaxed zone ratio of 8%–10% and below the degree of segregation 1.05.
文摘In this paper we present a stochastic model for daily average temperature to calculate the temperature indices upon which temperature-based derivatives are written. We propose a seasonal mean and volatility model that describes the daily average temperature behavior using the mean-reverting Ornstein-Uhlenbeck process. We also use higher order continuous-time autoregressive process with lag 3 for modeling the time evolution of the temperatures after removing trend and seasonality. Our model is fitted to 11 years of data recorded, in the period 1 January 2005 to 31 December 2015, Bahir Dar, Ethiopia, obtained from Ethiopia National Meteorological Services Agency. The analytical approximation formulas are used to price heating degree days(HDD) and cooling degree days(CDD) futures. The suggested model is analytically tractable for derivation of explicit prices for CDD and HDD futures and option. The price of the CDD future is calculated, using analytical approximation formulas. Numerical examples are presented to indicate the accuracy of the method. The results show that our model performs better to predict CDD indices.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11105001,10975125 and 11004001)
文摘In this paper,we have investigated the effect of Calogero-Moser type interaction on the quantum discord of thermal states of a spin chain.Our results imply that the quantum discord depends on the relative distance between the spins,the external magnetic field,and the temperature.By a comparison between the quantum discord and the entanglement of formation,the quantum discord is more robust than the entanglement of formation in the sense that the latter takes a zero value in a large range of the parameters,while the former takes a nonzero value.
基金supported by the Spanish Ministry of Science and Technology through the Project "Partial Defferential Equations in Thermomechanics.Theory and Applications"(No. MTM2009-08150)
文摘For β∈ R,the authors consider the evolution system in the unknown variables u and ααttu+αxxxxu+αxxtα-(β+αxu L22)αxxu=f,αttα-αxxα-αxxtα-αxxtu=0 describing the dynamics of type III thermoelastic extensible beams,where the dissipation is entirely contributed by the second equation ruling the evolution of the thermal displacement α.Under natural boundary conditions,the existence of the global attractor of optimal regularity for the related dynamical system acting on the phase space of weak energy solutions is established.
文摘We study thermal spin squeezing (TSS) and thermal global entanglement (TGE) in a general Heisenberg spin chain, in the presence of Dzyaloshinskii-Moriya interaction and an external magnetic field. We derive an inequality associating the squeezing parameter and the global concurrence, which establishes (TSS) as a signature of (TGE). The inequality reduces to equality for particular symmetric chains which also associates TSS with bipartite entanglement in such systems. We also check the results by presenting two numerical examples.
文摘In this paper, the lowtemperature properties of the spin1 twodimensionM frustrated Heisenberg antifer romagnet with the singleion anisotropy are investigated on a square lattice by using the spinwave theory. The influence of the frustration and anisotropy is found in the thermodynamics of the model, such as the temperature dependence of the staggered magnetization and specific heat. For some selected values of the frustration and anisotropy parameters, the results for the specific heat are compared with those of existing theories and numerical estimates. Within a spinwave analysis, we have found the evidence for an intermediate magnetically disorder phase to separate the Nel and collinear phases.
基金supported by the National Natural Science Foundation of China (Grant Nos.50971011,11174022 and 10974011)the Beijing Natural Science Foundation (Grant No.1102025)+1 种基金the State Key Laboratory of Software Development Environment (Grant No.SKLSDE-2011ZX-19)the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20091102110038)
文摘A new model of a quantum heat engine (QHE) cycle is established, in which the working substance consists of an interacting electrons system. One of our purposes is to test the validity of the second law of thermodynamics by this model, which is more general than the spin-1/2 antiferromagnetic Heisenberg model since it would recover the spin model when the on-site Coulomb interaction U is strong enough. On the basis of quantum mechanics and the first law of thermodynamics, we show no violation of the second law of thermodynamics during the cycle. We further study the performance characteristics of the cycle by investigating in detail the optimal relations of efficiency and dimensionless power output. We find that the efficiency of our engine can be expressed as η = t22/t21 in the large-U limit, which is valid even for a four sites QHE.
基金supported by the National S&T Major Project(Grant No.ZX06901)the National Natural Science Foundation of China(Grant No.11072131)
文摘Small reactors have become a new hotspot of international nuclear energy research.The nuclear heating reactor(NHR)technology developed by Tsinghua University is an important multipurpose small reactor solution with features such as high integration,modular design and full power natural circulation.A new small reactor based on the existing NHR-200 reactor was developed by the Institute of Nuclear and New Energy Technology of Tsinghua University.A full-scale natural circulation test loop with the same operating parameters as the actual reactor was built in order to experimentally validate the natural circulation ability of the reactor primary loop and heat-transfer ability of fuel assemblies and heat exchangers.Corresponding results are given in detail,including parameter validation of the reactor primary loop,flow rules of the natural circulation and heat-transfer coefficients of heaters and heat exchangers,which can be directly used in the actual reactor as a reference for optimization design.Finally,a characteristic parameter k is proposed to represent the natural circulation ability of a system.By using the new data arrangement method in the form of parameter k,comprehensive experimental results of the natural circulation can be represented by a simple integrated expression.The work in this paper is of importance in broadening application fields and pushing forward commercialization of the NHR type reactors.