Conversion of natural forests into pure plantation forests is a common management practice in subtropical China.To evaluate the effects of forest conversion on soil fertility, microbe numbers and enzyme activities in ...Conversion of natural forests into pure plantation forests is a common management practice in subtropical China.To evaluate the effects of forest conversion on soil fertility, microbe numbers and enzyme activities in topsoils (0-10 cm)were quantified in two 33-year-old monoculture plantations of Castanopsis kawakamii Hayata (CK) and Cunninghamia lanceolata Lamb. (Chinese fir) (CF), and compared to a neighboring relict natural C. kawakamii forest (NF), in Sanming,Fujian. Five soil samples were collected once each in January, April, July, September and November in 2000 in each forest for laboratory analysis. Over the sampling year, there were significant differences for bacteria, fungi and actinomycetes between forests and between seasons (P < 0.05). The largest bacteria and fungi populations were in NF, while CF contained the greatest number of actinomycetes. There were also significant differences (P < 0.05) with microbial respiration for forests and seasons. Additionally, compared with NF, urease and acid phosphatase were significantly lower (P < 0.05)in CK and CF. Also, the correlations of soil hydrolysable N and available P to soil microbial and enzymatic activities were highly significant (P < 0.01). Thus, to alter the traditional Chinese fir monoculture so as to mimic the natural forest conditions, managing mixed stands of Chinese fir and broadleaf trees or conducting crop rotation of conifers and broadleaf trees as well as minimizing forest disturbances like clear-cutting, slash burning and soil preparing, could be utilized.展开更多
Soil microbial biomass and community structures are commonly used as indicators for soil quality and fertility. A investigation was performed to study the effects of long-term natural restoration, cropping, and bare f...Soil microbial biomass and community structures are commonly used as indicators for soil quality and fertility. A investigation was performed to study the effects of long-term natural restoration, cropping, and bare fallow managements on the soil microbial biomass and bacterial community structures in depths of 0-10, 20 30, and 40-50 cm in a black soil (Mollisol). Microbial biomass was estimated from chloroform fumigation-extraction, and bacterial community structures were determined by analysis of 16S rDNA using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR- DGGE). Experimental results showed that microbial biomass significantly declined with soil depth in the managements of restoration and cropping, but not in the bare fallow. DGGE profiles indicated that the band number in top 0-10 cm soils was less than that in depth of 20-30 or 40-50 cm. These suggested that the microbial population was high but the bacterial community structure was simple in the topsoil. Cluster and principle component analysis based on DGGE banding patterns showed that the bacterial community structure was affected by soil depth more primarily than by managements, and the succession of bacterial community as increase of soil depth has a similar tendency in the three managements. Fourteen predominating DGGE bands were excised and sequenced, in which 6 bands were identified as the taxa of Verrueomicrobia, 2 bands as Actinobacteria, 2 bands as α-Proteobacteria, and the other 4 bands as 8-Proteobacteria, Aeidobacteria, Nitrospira, and unclassified bacteria. In addition, the sequences of 11 DGGE bands were closely related to uncultured bacteria. Thus, the bacterial community structure in black soil was stable, and the predominating bacterial groups were uncultured.展开更多
The changes of microbial biomass carbon (MBC) and nitrogen (MBN) and microbial community in the topsoil of the abandoned agricultural land on the semi-arid Loess Plateau in China during the natural succession were eva...The changes of microbial biomass carbon (MBC) and nitrogen (MBN) and microbial community in the topsoil of the abandoned agricultural land on the semi-arid Loess Plateau in China during the natural succession were evaluated to understand the relationship between microbial community and soil properties. MBC and MBN were measured using fumigation extraction, and microbial community was analyzed by the method of fatty acid methyl ester (FAME). The contents of organic C, total N, MBC, MBN, total FAME, fungal FAME, bacterial FAME and Gram-negative bacterial FAME at the natural succession sites were higher than those of the agricultural land, but lower than those of the natural vegetation sites. The MBC, MBN and total FAME were closely correlated with organic C and total N. Furthermore, organic C and total N were found to be positively correlated with fungal FAME, bacterial FAME, fungal/bacterial and Gram-negative bacterial FAME. Natural succession would be useful for improving soil microbial properties and might be an important alternative for sustaining soil quality on the semi-arid Loess Plateau in China.展开更多
The air microbial species and quantities in a wood mill in Harbin, China weremeasured using sedimentation plate method. Results showed that the microbial quantity in the air atthe workshop without depurator (54939 cfu...The air microbial species and quantities in a wood mill in Harbin, China weremeasured using sedimentation plate method. Results showed that the microbial quantity in the air atthe workshop without depurator (54939 cfu·m^(-3)) was 2.1 times that of the workshop withdepu-rator (25768 cfu·m^(-3)). The depurator could purify air microorganisms at the workshop, witha purifying rate of 53.1%, but it did not reach the standards of clean air. Comparatively thedepurator is effective in reducing the quantity of air actinomyces, and some kinds of airactinomyces, such as Scabies, Cinereas and Hygroscopicas, can be clean out, but it is not veryeffective to bacteria and fungi. It is suggested that more effective and feasible methods should bedeveloped for purifying air microorganisms at the workshop in the future.展开更多
Microbial oceanography is an emerging discipline resulted from the interaction,cross-fertilization and integration of life science and ocean science.Microbial oceanography integrates the principles of marine microbiol...Microbial oceanography is an emerging discipline resulted from the interaction,cross-fertilization and integration of life science and ocean science.Microbial oceanography integrates the principles of marine microbiology,microbial ecology and oceanography to study the role of microorganisms in the biogeochemical dynamics of natural marine ecosystems.The application of genomics tools to study marine microbes is resulting in rapid advancements in microbial oceanography that has important implications in global carbon cycle,climate change,and ecosystem function.Here we review the application of genomics and metagenomics in microbial oceanography and suggest future directions in microbial oceanography research.展开更多
Microbial activity in soil is known to be controlled by various factors. However, the operating mechanisms have not yet been clearly identified, particularly under climate change conditions, although they are crucial ...Microbial activity in soil is known to be controlled by various factors. However, the operating mechanisms have not yet been clearly identified, particularly under climate change conditions, although they are crucial for understanding carbon dynamics in terrestrial ecosystems. In this study, a natural incubation experiment was carried out using intact soil cores transferred from high altitude(1 500 m) to low(900 m) altitude to mimic climate change scenarios in a typical cold-temperate mountainous area in Japan. Soil microbial activities, indicated by substrate-induced respiration(SIR) and metabolic quotient(q CO2), together with soil physicalchemical properties(abiotic factors) and soil functional enzyme and microbial properties(biotic factors), were investigated throughout the growing season in 2013. Results of principal component analysis(PCA) indicated that soil microbial biomass carbon(MBC) andβ-glucosidase activity were the most important factors characterizing the responses of soil microbes to global warming. Although there was a statistical difference of 2.82 ℃ between the two altitudes, such variations in soil physical-chemical properties did not show any remarkable effect on soil microbial activities, suggesting that they might indirectly impact carbon dynamics through biotic factors such as soil functional enzymes. It was also found that the biotic factors mainly controlled soil microbial activities at elevated temperature,which might trigger the inner soil dynamics to respond to the changing environment. Future studies should hence take more biotic variables into account for accurately projecting the responses of soil metabolic activities to climate change.展开更多
Polysaccharides widely exist in plants,animals and microorganisms,and have important impacts on the diet and health of humans.However,the research on polysaccharide has progressed much slower than that of protein,due ...Polysaccharides widely exist in plants,animals and microorganisms,and have important impacts on the diet and health of humans.However,the research on polysaccharide has progressed much slower than that of protein,due to the complexity of polysaccharide structures,limitations on structural theory,and poor understanding of the mechanism of the bioactivities.In order to promote related research fields,this review provided recommendations to solve the critical issues in the research of polysaccharide structure.The followings are recommended:correct understanding structure types of polysaccharide,improving the preparation efficiency of polysaccharide to ensure reproducibility, and improving characterization of fine structures utilizing "partial degradation-methylation-NMR".Importantly,the theories and research ideas for protein research should not be indiscriminately applied to polysaccharide research.Proper theories and research methods for polysaccharide should be established to promote the field.展开更多
基金the Basic Research Program of Fujian Province (No. 2000-F-004).
文摘Conversion of natural forests into pure plantation forests is a common management practice in subtropical China.To evaluate the effects of forest conversion on soil fertility, microbe numbers and enzyme activities in topsoils (0-10 cm)were quantified in two 33-year-old monoculture plantations of Castanopsis kawakamii Hayata (CK) and Cunninghamia lanceolata Lamb. (Chinese fir) (CF), and compared to a neighboring relict natural C. kawakamii forest (NF), in Sanming,Fujian. Five soil samples were collected once each in January, April, July, September and November in 2000 in each forest for laboratory analysis. Over the sampling year, there were significant differences for bacteria, fungi and actinomycetes between forests and between seasons (P < 0.05). The largest bacteria and fungi populations were in NF, while CF contained the greatest number of actinomycetes. There were also significant differences (P < 0.05) with microbial respiration for forests and seasons. Additionally, compared with NF, urease and acid phosphatase were significantly lower (P < 0.05)in CK and CF. Also, the correlations of soil hydrolysable N and available P to soil microbial and enzymatic activities were highly significant (P < 0.01). Thus, to alter the traditional Chinese fir monoculture so as to mimic the natural forest conditions, managing mixed stands of Chinese fir and broadleaf trees or conducting crop rotation of conifers and broadleaf trees as well as minimizing forest disturbances like clear-cutting, slash burning and soil preparing, could be utilized.
基金Project supported by the National Natural Science Foundation of China (No.40671099)
文摘Soil microbial biomass and community structures are commonly used as indicators for soil quality and fertility. A investigation was performed to study the effects of long-term natural restoration, cropping, and bare fallow managements on the soil microbial biomass and bacterial community structures in depths of 0-10, 20 30, and 40-50 cm in a black soil (Mollisol). Microbial biomass was estimated from chloroform fumigation-extraction, and bacterial community structures were determined by analysis of 16S rDNA using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR- DGGE). Experimental results showed that microbial biomass significantly declined with soil depth in the managements of restoration and cropping, but not in the bare fallow. DGGE profiles indicated that the band number in top 0-10 cm soils was less than that in depth of 20-30 or 40-50 cm. These suggested that the microbial population was high but the bacterial community structure was simple in the topsoil. Cluster and principle component analysis based on DGGE banding patterns showed that the bacterial community structure was affected by soil depth more primarily than by managements, and the succession of bacterial community as increase of soil depth has a similar tendency in the three managements. Fourteen predominating DGGE bands were excised and sequenced, in which 6 bands were identified as the taxa of Verrueomicrobia, 2 bands as Actinobacteria, 2 bands as α-Proteobacteria, and the other 4 bands as 8-Proteobacteria, Aeidobacteria, Nitrospira, and unclassified bacteria. In addition, the sequences of 11 DGGE bands were closely related to uncultured bacteria. Thus, the bacterial community structure in black soil was stable, and the predominating bacterial groups were uncultured.
基金Supported by the National Natural Science Foundation of China (Nos.50639070-4 and 30671666)the National Major Program on Pollution Control and Management of Water Body (No.2008ZX07104-003-03)
文摘The changes of microbial biomass carbon (MBC) and nitrogen (MBN) and microbial community in the topsoil of the abandoned agricultural land on the semi-arid Loess Plateau in China during the natural succession were evaluated to understand the relationship between microbial community and soil properties. MBC and MBN were measured using fumigation extraction, and microbial community was analyzed by the method of fatty acid methyl ester (FAME). The contents of organic C, total N, MBC, MBN, total FAME, fungal FAME, bacterial FAME and Gram-negative bacterial FAME at the natural succession sites were higher than those of the agricultural land, but lower than those of the natural vegetation sites. The MBC, MBN and total FAME were closely correlated with organic C and total N. Furthermore, organic C and total N were found to be positively correlated with fungal FAME, bacterial FAME, fungal/bacterial and Gram-negative bacterial FAME. Natural succession would be useful for improving soil microbial properties and might be an important alternative for sustaining soil quality on the semi-arid Loess Plateau in China.
文摘The air microbial species and quantities in a wood mill in Harbin, China weremeasured using sedimentation plate method. Results showed that the microbial quantity in the air atthe workshop without depurator (54939 cfu·m^(-3)) was 2.1 times that of the workshop withdepu-rator (25768 cfu·m^(-3)). The depurator could purify air microorganisms at the workshop, witha purifying rate of 53.1%, but it did not reach the standards of clean air. Comparatively thedepurator is effective in reducing the quantity of air actinomyces, and some kinds of airactinomyces, such as Scabies, Cinereas and Hygroscopicas, can be clean out, but it is not veryeffective to bacteria and fungi. It is suggested that more effective and feasible methods should bedeveloped for purifying air microorganisms at the workshop in the future.
文摘Microbial oceanography is an emerging discipline resulted from the interaction,cross-fertilization and integration of life science and ocean science.Microbial oceanography integrates the principles of marine microbiology,microbial ecology and oceanography to study the role of microorganisms in the biogeochemical dynamics of natural marine ecosystems.The application of genomics tools to study marine microbes is resulting in rapid advancements in microbial oceanography that has important implications in global carbon cycle,climate change,and ecosystem function.Here we review the application of genomics and metagenomics in microbial oceanography and suggest future directions in microbial oceanography research.
基金Supported by the Japan Science and Technology Agency(JST)Environmental Leadership Program(No.016100012)
文摘Microbial activity in soil is known to be controlled by various factors. However, the operating mechanisms have not yet been clearly identified, particularly under climate change conditions, although they are crucial for understanding carbon dynamics in terrestrial ecosystems. In this study, a natural incubation experiment was carried out using intact soil cores transferred from high altitude(1 500 m) to low(900 m) altitude to mimic climate change scenarios in a typical cold-temperate mountainous area in Japan. Soil microbial activities, indicated by substrate-induced respiration(SIR) and metabolic quotient(q CO2), together with soil physicalchemical properties(abiotic factors) and soil functional enzyme and microbial properties(biotic factors), were investigated throughout the growing season in 2013. Results of principal component analysis(PCA) indicated that soil microbial biomass carbon(MBC) andβ-glucosidase activity were the most important factors characterizing the responses of soil microbes to global warming. Although there was a statistical difference of 2.82 ℃ between the two altitudes, such variations in soil physical-chemical properties did not show any remarkable effect on soil microbial activities, suggesting that they might indirectly impact carbon dynamics through biotic factors such as soil functional enzymes. It was also found that the biotic factors mainly controlled soil microbial activities at elevated temperature,which might trigger the inner soil dynamics to respond to the changing environment. Future studies should hence take more biotic variables into account for accurately projecting the responses of soil metabolic activities to climate change.
基金supported by the Excellent Young Scientists Fund(Grant No.31422042)Key Program of National Natural Science Foundation of China (Grant No.31130041)+2 种基金National Natural Science Foundation of China (Grant Nos.21564007 and 31571826)State Key Laboratory of Food Science and Technology,Nanchang University (Grant No.SKLF-QN-201505)Hong Kong Scholars Program (Grant No.XJ2016058)
文摘Polysaccharides widely exist in plants,animals and microorganisms,and have important impacts on the diet and health of humans.However,the research on polysaccharide has progressed much slower than that of protein,due to the complexity of polysaccharide structures,limitations on structural theory,and poor understanding of the mechanism of the bioactivities.In order to promote related research fields,this review provided recommendations to solve the critical issues in the research of polysaccharide structure.The followings are recommended:correct understanding structure types of polysaccharide,improving the preparation efficiency of polysaccharide to ensure reproducibility, and improving characterization of fine structures utilizing "partial degradation-methylation-NMR".Importantly,the theories and research ideas for protein research should not be indiscriminately applied to polysaccharide research.Proper theories and research methods for polysaccharide should be established to promote the field.