In this paper, we conduct research on the natural image classification and segmentation algorithm based on GPU and neural network. The application of image segmentation is very broad, almost appeared in all areas rela...In this paper, we conduct research on the natural image classification and segmentation algorithm based on GPU and neural network. The application of image segmentation is very broad, almost appeared in all areas related to image processing, and involved in various types. With the fast development of computing technology and integrated circuit technology, the renewal speed of graphics hardware. Our method combines the GPU with network to optimize the traditional image segmentation and classification methods which will be meaningful. In the future, we will focus our attention on the hardware deployment of the GPU to modify the current approach.展开更多
Natural selection has been shown to drive population differentiation and speciation. The role of sexual selection in this process is controversial; however, most of the work has centered on mate choice while the role ...Natural selection has been shown to drive population differentiation and speciation. The role of sexual selection in this process is controversial; however, most of the work has centered on mate choice while the role of male-male competition in speciation is relatively understudied. Here, we outline how male-male competition can be a source of diversifying selection on male competitive phenotypes, and how this can contribute to the evolution of reproductive isolation. We highlight how negative frequency-dependent selection (advantage of rare phenotype arising from stronger male-male competition between similar male phenotypes compared with dissimilar male pheno- types) and disruptive selection (advantage of extreme phenotypes) drives the evolution of diversity in competitive traits such as weapon size, nuptial coloration, or aggressiveness. We underscore that male-male competition interacts with other life-history functions and that variable male com- petitive phenotypes may represent alternative adaptive options. In addition to competition for mates, aggressive interference competition for ecological resources can exert selection on compet- itor signals. We call for a better integration of male-male competition with ecological interference competition since both can influence the process of speciation via comparable but distinct mecha- nisms. Altogether, we present a more comprehensive framework for studying the role of male-male competition in speciation, and emphasize the need for better integration of insights gained from other fields studying the evolutionary, behavioral, and physiological consequences of agonistic interactions.展开更多
When hybridization results in reduced fitness, natural selection is expected to favor the evolution of traits that minimize the likelihood of hybridizing in the first place. This process, termed reinforcement (or, mo...When hybridization results in reduced fitness, natural selection is expected to favor the evolution of traits that minimize the likelihood of hybridizing in the first place. This process, termed reinforcement (or, more generally, reproductive character displacement), thereby contributes to the evolution of enhanced reproductive isolation between hybridizing groups. By enhancing reproductive isolation in this way, reinforcement plays an important role in the final stages of speciation. However, reinforcement can also contribute to the early stages of speciation. Specifically, because selection to avoid hybridization occurs only in sympatric populations, the unfolding of reinforcement can lead to the evolution of traits in sympatric populations that reduce reproduction between conspecifics in sympatry versus those in allopatry. Thus, reinforcement between species can lead to reproductive isolation--and possibly speciation-between populations in sympatry versus those in allopatry or among different sympatric populations. Here, I describe how this process can occur, the conditions under which it is most likely to occur, and the empirical data needed to evaluate the hypothesis that reinforcement can initiate speciation.展开更多
文摘In this paper, we conduct research on the natural image classification and segmentation algorithm based on GPU and neural network. The application of image segmentation is very broad, almost appeared in all areas related to image processing, and involved in various types. With the fast development of computing technology and integrated circuit technology, the renewal speed of graphics hardware. Our method combines the GPU with network to optimize the traditional image segmentation and classification methods which will be meaningful. In the future, we will focus our attention on the hardware deployment of the GPU to modify the current approach.
文摘Natural selection has been shown to drive population differentiation and speciation. The role of sexual selection in this process is controversial; however, most of the work has centered on mate choice while the role of male-male competition in speciation is relatively understudied. Here, we outline how male-male competition can be a source of diversifying selection on male competitive phenotypes, and how this can contribute to the evolution of reproductive isolation. We highlight how negative frequency-dependent selection (advantage of rare phenotype arising from stronger male-male competition between similar male phenotypes compared with dissimilar male pheno- types) and disruptive selection (advantage of extreme phenotypes) drives the evolution of diversity in competitive traits such as weapon size, nuptial coloration, or aggressiveness. We underscore that male-male competition interacts with other life-history functions and that variable male com- petitive phenotypes may represent alternative adaptive options. In addition to competition for mates, aggressive interference competition for ecological resources can exert selection on compet- itor signals. We call for a better integration of male-male competition with ecological interference competition since both can influence the process of speciation via comparable but distinct mecha- nisms. Altogether, we present a more comprehensive framework for studying the role of male-male competition in speciation, and emphasize the need for better integration of insights gained from other fields studying the evolutionary, behavioral, and physiological consequences of agonistic interactions.
文摘When hybridization results in reduced fitness, natural selection is expected to favor the evolution of traits that minimize the likelihood of hybridizing in the first place. This process, termed reinforcement (or, more generally, reproductive character displacement), thereby contributes to the evolution of enhanced reproductive isolation between hybridizing groups. By enhancing reproductive isolation in this way, reinforcement plays an important role in the final stages of speciation. However, reinforcement can also contribute to the early stages of speciation. Specifically, because selection to avoid hybridization occurs only in sympatric populations, the unfolding of reinforcement can lead to the evolution of traits in sympatric populations that reduce reproduction between conspecifics in sympatry versus those in allopatry. Thus, reinforcement between species can lead to reproductive isolation--and possibly speciation-between populations in sympatry versus those in allopatry or among different sympatric populations. Here, I describe how this process can occur, the conditions under which it is most likely to occur, and the empirical data needed to evaluate the hypothesis that reinforcement can initiate speciation.