Habitat plays a critical role in regulating fish community structure. Using the data collected from a monthly trammel net survey in Ma'an archipelago off the east coast of China, we evaluated impacts of five diffe...Habitat plays a critical role in regulating fish community structure. Using the data collected from a monthly trammel net survey in Ma'an archipelago off the east coast of China, we evaluated impacts of five different habitats(artificial reefs, mussel farms, cage aquaculture, rocky reefs and soft bottom) on fish assemblages. This study suggests that artificial reefs(AR) have significantly higher species richness, abundance and diversity than mussel farms(MF) or soft bottom(SB) habitats during most seasons, and that fish taxa in the AR habitats are similar to those in the rocky reef(RR) habitats. Two different fish assemblage patterns were revealed in the study area using non-metric multidimensional scaling ordination: an assemblage dominated by reef fishes(especially by Scorpaenidae species) in AR, RR and cage aquaculture(CA) habitats and an assemblage dominated by Sciaenidae species in MF and SB habitats. We suggest that reef fishes play a key role in differentiating fish community structures in the study area. Although few differences in fish abundance and diversity were found between the CA and SB habitats, a more diverse age structure was observed in the CA habitats. A much more complex fish assemblage and enhanced population of local species were established as a result of the presence of both floating and fixed artificial structures, probably through improved survival rates.展开更多
Speciation research during the last several decades has confirmed that natural selection frequently drives the genera- tion of new species. But how does this process generally unfold in nature? We argue that answerin...Speciation research during the last several decades has confirmed that natural selection frequently drives the genera- tion of new species. But how does this process generally unfold in nature? We argue that answering this question requires a clearer conceptual framework for understanding selection's role in speciation. We present a unified framework of speciation, pro- viding mechanistic descriptions of fundamentally distinct routes to speciation, and how these may interact during lineage splitting Two major categories are recognized: reproductive isolation resulting from (1) responses to selection, "speciation by selection," or (2) non-selective processes, "speciation without selection." Speciation by selection can occur via three mechanisms: (1) similar selection, (2) divergent selection, and (3) reinforcement selection. Understanding ecology's role in speciation requires uncovering how these three mechanisms contribute to reproductive isolation, and their relative importance compared to non-selective proce- sses, because all three mechanisms can occur side-by-side during speciation. To accomplish this, we highlight examination of groups of organisms inhabiting replicated environmental gradients. This scenario is common in nature, and a large literature illus- trates that both parallel and non-parallel responses to similar environments are widespread, and each can result in speciation. This recognition reveals four general pathways of speciation by similar or divergent selection--parallel and nonparallel responses to similar and divergent selection. Altogether, we present a more precise framework for speciation research, draw attention to some under-recognized features of speciation, emphasize the multidimensionality of speciation, reveal limitations of some previous tests and descriptions of speciation mechanisms, and point to a number of directions for future investigation [Current Zoology 59 (1): 31-52, 2013].展开更多
基金supported by the National High Technology Research and Development Program of China (863 Program, No. 2006AA100303)the National Basic Research Program of China (No. 2011CB111608)partially supported by the Maine Sea Grant College Program at the University of Maine in the USA
文摘Habitat plays a critical role in regulating fish community structure. Using the data collected from a monthly trammel net survey in Ma'an archipelago off the east coast of China, we evaluated impacts of five different habitats(artificial reefs, mussel farms, cage aquaculture, rocky reefs and soft bottom) on fish assemblages. This study suggests that artificial reefs(AR) have significantly higher species richness, abundance and diversity than mussel farms(MF) or soft bottom(SB) habitats during most seasons, and that fish taxa in the AR habitats are similar to those in the rocky reef(RR) habitats. Two different fish assemblage patterns were revealed in the study area using non-metric multidimensional scaling ordination: an assemblage dominated by reef fishes(especially by Scorpaenidae species) in AR, RR and cage aquaculture(CA) habitats and an assemblage dominated by Sciaenidae species in MF and SB habitats. We suggest that reef fishes play a key role in differentiating fish community structures in the study area. Although few differences in fish abundance and diversity were found between the CA and SB habitats, a more diverse age structure was observed in the CA habitats. A much more complex fish assemblage and enhanced population of local species were established as a result of the presence of both floating and fixed artificial structures, probably through improved survival rates.
文摘Speciation research during the last several decades has confirmed that natural selection frequently drives the genera- tion of new species. But how does this process generally unfold in nature? We argue that answering this question requires a clearer conceptual framework for understanding selection's role in speciation. We present a unified framework of speciation, pro- viding mechanistic descriptions of fundamentally distinct routes to speciation, and how these may interact during lineage splitting Two major categories are recognized: reproductive isolation resulting from (1) responses to selection, "speciation by selection," or (2) non-selective processes, "speciation without selection." Speciation by selection can occur via three mechanisms: (1) similar selection, (2) divergent selection, and (3) reinforcement selection. Understanding ecology's role in speciation requires uncovering how these three mechanisms contribute to reproductive isolation, and their relative importance compared to non-selective proce- sses, because all three mechanisms can occur side-by-side during speciation. To accomplish this, we highlight examination of groups of organisms inhabiting replicated environmental gradients. This scenario is common in nature, and a large literature illus- trates that both parallel and non-parallel responses to similar environments are widespread, and each can result in speciation. This recognition reveals four general pathways of speciation by similar or divergent selection--parallel and nonparallel responses to similar and divergent selection. Altogether, we present a more precise framework for speciation research, draw attention to some under-recognized features of speciation, emphasize the multidimensionality of speciation, reveal limitations of some previous tests and descriptions of speciation mechanisms, and point to a number of directions for future investigation [Current Zoology 59 (1): 31-52, 2013].