Data selection and methods for fitting coefficients were considered to test the self-thinning law. TheChinese fir (Cunninghamia lanceolata) in even-aged pure stands with 26 years of observation data were applied tofit...Data selection and methods for fitting coefficients were considered to test the self-thinning law. TheChinese fir (Cunninghamia lanceolata) in even-aged pure stands with 26 years of observation data were applied tofit Reineke's (1933) empirically derived stand density rule (No∝d^-1.605, N = numbers of stems, d= mean diameter),Yoda's (1963) self-thinning law based on Euclidian geometry (v ∝ N^-3/2, v= tree volume), and West, Brown andEnquist's (1997, 1999)(WBE) fractal geometry (w ∝ d^-8/3). OLS, RMA and SFF algorithms provided observedself-thinning exponents with the seven mortality rate intervals (2%--80%, 5%--80%, 10%- 80%, 15%--80%,20%- 80%, 25%--80% and 30%- 80%), which were tested against the exponents, and expected by the rules con-sidered. Hope for a consistent allometry law that ignores species-specific morphologic allometric and scale differ-ences faded. Exponents a of N ∝ d^α, were significantly different from -1.605 and -2, not expected by Euclidianfractal geometry;exponents β of w ∝ N^β varied around Yoda's self-thinning slope - 3/2, but was significantly differentfrom - 4/3;exponent Y of w ∝ d^γ tended to neither 8/3 nor 3.展开更多
基金The 12th and 13th Five-Year Plan of the National Scientific and Technological Support Projects(2015BAD09B01,2016YFD0600302)Jiangxi Scientific and Technological innovation plan(201702)National Natural Science Foundation of China(31570619,31370629)
文摘Data selection and methods for fitting coefficients were considered to test the self-thinning law. TheChinese fir (Cunninghamia lanceolata) in even-aged pure stands with 26 years of observation data were applied tofit Reineke's (1933) empirically derived stand density rule (No∝d^-1.605, N = numbers of stems, d= mean diameter),Yoda's (1963) self-thinning law based on Euclidian geometry (v ∝ N^-3/2, v= tree volume), and West, Brown andEnquist's (1997, 1999)(WBE) fractal geometry (w ∝ d^-8/3). OLS, RMA and SFF algorithms provided observedself-thinning exponents with the seven mortality rate intervals (2%--80%, 5%--80%, 10%- 80%, 15%--80%,20%- 80%, 25%--80% and 30%- 80%), which were tested against the exponents, and expected by the rules con-sidered. Hope for a consistent allometry law that ignores species-specific morphologic allometric and scale differ-ences faded. Exponents a of N ∝ d^α, were significantly different from -1.605 and -2, not expected by Euclidianfractal geometry;exponents β of w ∝ N^β varied around Yoda's self-thinning slope - 3/2, but was significantly differentfrom - 4/3;exponent Y of w ∝ d^γ tended to neither 8/3 nor 3.