We presented a novel framework for automatic behavior clustering and unsupervised anomaly detection in a large video set. The framework consisted of the following key components: 1 ) Drawing from natural language pr...We presented a novel framework for automatic behavior clustering and unsupervised anomaly detection in a large video set. The framework consisted of the following key components: 1 ) Drawing from natural language processing, we introduced a compact and effective behavior representation method as a stochastic sequence of spatiotemporal events, where we analyzed the global structural information of behaviors using their local action statistics. 2) The natural grouping of behavior patterns was discovered through a novel clustering algorithm. 3 ) A run-time accumulative anomaly measure was introduced to detect abnormal behavior, whereas normal behavior patterns were recognized when sufficient visual evidence had become available based on an online Likelihood Ratio Test (LRT) method. This ensured robust and reliable anomaly detection and normal behavior recognition at the shortest possible time. Experimental results demonstrated the effectiveness and robustness of our approach using noisy and sparse data sets collected from a real surveillance scenario.展开更多
Sample entropy can reflect the change of level of new information in signal sequence as well as the size of the new information. Based on the sample entropy as the features of speech classification, the paper firstly ...Sample entropy can reflect the change of level of new information in signal sequence as well as the size of the new information. Based on the sample entropy as the features of speech classification, the paper firstly extract the sample entropy of mixed signal, mean and variance to calculate each signal sample entropy, finally uses the K mean clustering to recognize. The simulation results show that: the recognition rate can be increased to 89.2% based on sample entropy.展开更多
In this paper, we conduct research on the novel natural image reconstruction and representation algorithm based on clustenng and modified neural network. Image resolution enhancement is one of the earliest researches ...In this paper, we conduct research on the novel natural image reconstruction and representation algorithm based on clustenng and modified neural network. Image resolution enhancement is one of the earliest researches of single image interpolation. Although the traditional interpolation and method for single image amplification is effect, but did not provide more useful information. Our method combines the neural network and the clustering approach. The experiment shows that our method performs well and satisfactory.展开更多
基金This work is supported by National Natural Science Foundation of China (NSFC) under Grant No. 60573139 andNational Science & Technology Pillar Program of China under Grant NO. 2008BAH221303.
文摘We presented a novel framework for automatic behavior clustering and unsupervised anomaly detection in a large video set. The framework consisted of the following key components: 1 ) Drawing from natural language processing, we introduced a compact and effective behavior representation method as a stochastic sequence of spatiotemporal events, where we analyzed the global structural information of behaviors using their local action statistics. 2) The natural grouping of behavior patterns was discovered through a novel clustering algorithm. 3 ) A run-time accumulative anomaly measure was introduced to detect abnormal behavior, whereas normal behavior patterns were recognized when sufficient visual evidence had become available based on an online Likelihood Ratio Test (LRT) method. This ensured robust and reliable anomaly detection and normal behavior recognition at the shortest possible time. Experimental results demonstrated the effectiveness and robustness of our approach using noisy and sparse data sets collected from a real surveillance scenario.
文摘Sample entropy can reflect the change of level of new information in signal sequence as well as the size of the new information. Based on the sample entropy as the features of speech classification, the paper firstly extract the sample entropy of mixed signal, mean and variance to calculate each signal sample entropy, finally uses the K mean clustering to recognize. The simulation results show that: the recognition rate can be increased to 89.2% based on sample entropy.
文摘In this paper, we conduct research on the novel natural image reconstruction and representation algorithm based on clustenng and modified neural network. Image resolution enhancement is one of the earliest researches of single image interpolation. Although the traditional interpolation and method for single image amplification is effect, but did not provide more useful information. Our method combines the neural network and the clustering approach. The experiment shows that our method performs well and satisfactory.