期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
疫情防控常态化时期青年人休闲活动的时空特征及影响因素探究--以南京市为例 被引量:4
1
作者 魏琛朋 朱喜钢 +1 位作者 孙洁 张宇 《现代城市研究》 北大核心 2022年第6期23-30,53,共9页
文章基于2020年4—10月的微博、大众点评、高德地图等多源大数据,定量化地分析了在疫情冲击下南京市青年人休闲活动的类型、时空分布特征以及影响因素发现:(1)青年人休闲活动集中在20:00-0:00.(2)亲近自然、读书学习、艺术体验等个体、... 文章基于2020年4—10月的微博、大众点评、高德地图等多源大数据,定量化地分析了在疫情冲击下南京市青年人休闲活动的类型、时空分布特征以及影响因素发现:(1)青年人休闲活动集中在20:00-0:00.(2)亲近自然、读书学习、艺术体验等个体、分散、户外活动是疫情防控常态化前期青年人休闲活动的重要选择;随后青年人休闲活动的空间分布从分散化向集中化转变(3)各类活动受到建成环境、活动内容、心理因素等主客观因素的综合影响研究对城市智慧化疫情防控和促进有活力的城市建成环境设计具有重要参考意义. 展开更多
关键词 新冠疫情 青年群体 休闲活动 自然语言分类
下载PDF
Construction of unsupervised sentiment classifier on idioms resources 被引量:2
2
作者 谢松县 王挺 《Journal of Central South University》 SCIE EI CAS 2014年第4期1376-1384,共9页
Sentiment analysis is the computational study of how opinions, attitudes, emotions, and perspectives are expressed in language, and has been the important task of natural language processing. Sentiment analysis is hig... Sentiment analysis is the computational study of how opinions, attitudes, emotions, and perspectives are expressed in language, and has been the important task of natural language processing. Sentiment analysis is highly valuable for both research and practical applications. The focuses were put on the difficulties in the construction of sentiment classifiers which normally need tremendous labeled domain training data, and a novel unsupervised framework was proposed to make use of the Chinese idiom resources to develop a general sentiment classifier. Furthermore, the domain adaption of general sentiment classifier was improved by taking the general classifier as the base of a self-training procedure to get a domain self-training sentiment classifier. To validate the effect of the unsupervised framework, several experiments were carried out on publicly available Chinese online reviews dataset. The experiments show that the proposed framework is effective and achieves encouraging results. Specifically, the general classifier outperforms two baselines(a Na?ve 50% baseline and a cross-domain classifier), and the bootstrapping self-training classifier approximates the upper bound domain-specific classifier with the lowest accuracy of 81.5%, but the performance is more stable and the framework needs no labeled training dataset. 展开更多
关键词 sentiment analysis sentiment classification bootstrapping idioms general classifier domain-specific classifier
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部