29Si-NMR and 1H-NMR were used to follow up the basic hydrolysis of tetraethyl orthosilicate (TOES) and the results showed that species of monomer, dimer, trimer, cyclic and polymer silicates were formed. The monomer...29Si-NMR and 1H-NMR were used to follow up the basic hydrolysis of tetraethyl orthosilicate (TOES) and the results showed that species of monomer, dimer, trimer, cyclic and polymer silicates were formed. The monomer and dimer were favorable for the high activity of zeolite. XRD, 13C CP/MAS and 29Si NMR were used to trace the crystallization process of hollow titanium silicalite zeolites (HTS). The results showed that the induction period of HTS was 80 min, and subsequently it took next 10 min to form HTS and the remaining time of the crystallization period might function for cleaning up the pores and/or washing off the impurities from the HTS zeolite. The catalytic oxidation performance of HTS zeolite is different from that of the acid activity of zeolite in which the conventional definition of crystallinity does not reflect the catalytic oxidation activity proportionally. The synthesized HTS samples were character- ized by XRD, FT-IR, UV-Vis and Raman spectra. It was confirmed that Ti was incorporated into the zeolite framework. The synthesized HTS samples revealed good repeatability and high activity for oxidation of phenol into diphenol.展开更多
Poly (methyl methacrylate) (PMMA) brushes were synthesized from silicon wafers via surface initiated atom transfer radical polymerization (SI-ATRP). Energy disperse spectroscopy (EDS) and atomic force microsco...Poly (methyl methacrylate) (PMMA) brushes were synthesized from silicon wafers via surface initiated atom transfer radical polymerization (SI-ATRP). Energy disperse spectroscopy (EDS) and atomic force microscopy (AFM) confirmed that PMMA brushes were successfully prepared on the silicon wafers, and the surface became more hydrophobic according to the contact angle of 69~. It is found that CuCI/1, 1, 4, 7, 10, 10-hexamethyl triethylenetetramine (HMTETA) system is more suitable than CuBr/N, N, N′, N″, N′″-pentamethyl diethylenetriamine (PMDETA) system to control the free radical polymerization of MMA in solution. Nevertheless, better control on the thickness of PMMA brushes was achieved in CuBr/PMDETA than in CuC1/HMTETA due to higher activity and better reversibility of the former system.展开更多
Fenton reaction based on Fe2+-H2O2 system has been widely applied in water remediation, but the obvious drawbacks largely hinder its practical uses. Alternatively, heterogeneous nanomaterials with proper surface modif...Fenton reaction based on Fe2+-H2O2 system has been widely applied in water remediation, but the obvious drawbacks largely hinder its practical uses. Alternatively, heterogeneous nanomaterials with proper surface modification could be used as Fenton-like catalysts. Surface doping of Ti O2 could concentrate the pollutants surrounding the Fe3O4 catalyst, which might benefit the catalytic performance of Fe3O4. Herein, we reported that Ti O2-doped Fe3O4 nanoparticles(NPs) could be used as high-performance Fenton-like catalyst for dye decoloration in near neutral environment, where the doping of Ti O2 on Fe3O4 surface dramatically improved the catalytic activity of Fe3O4 in Fenton-like reaction. Ti O2-doped Fe3O4 NPs catalyzed the decomposition of H2O2 to oxidize methylene blue without external energy supply, resulting in effective decoloration. Ti O2-doped Fe3O4 NPs showed high catalytic activity under various p H values and even in the presence of radical scavenger. More catalysts and H2O2 would facilitate the decoloration. At higher temperature, the decoloration became faster and more effective. The implication to the environmental applications of Ti O2-doped Fe3O4 NPs is discussed.展开更多
基金Project supported by the National Science Foundation of China(2006CB202508)
文摘29Si-NMR and 1H-NMR were used to follow up the basic hydrolysis of tetraethyl orthosilicate (TOES) and the results showed that species of monomer, dimer, trimer, cyclic and polymer silicates were formed. The monomer and dimer were favorable for the high activity of zeolite. XRD, 13C CP/MAS and 29Si NMR were used to trace the crystallization process of hollow titanium silicalite zeolites (HTS). The results showed that the induction period of HTS was 80 min, and subsequently it took next 10 min to form HTS and the remaining time of the crystallization period might function for cleaning up the pores and/or washing off the impurities from the HTS zeolite. The catalytic oxidation performance of HTS zeolite is different from that of the acid activity of zeolite in which the conventional definition of crystallinity does not reflect the catalytic oxidation activity proportionally. The synthesized HTS samples were character- ized by XRD, FT-IR, UV-Vis and Raman spectra. It was confirmed that Ti was incorporated into the zeolite framework. The synthesized HTS samples revealed good repeatability and high activity for oxidation of phenol into diphenol.
基金Project(21376271)supported by the National Natural Science Foundation of ChinaProject(2013)supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,China+2 种基金Projects(CL12129,201310533008)supported by the Undergraduates Innovative Training Foundation of Central South University,ChinaProject(Z12060)supported by the Undergraduate Free Exploration Innovation Foundation of Central South University,ChinaProject(CSUZC2013008)supported by the Open-End Fund for the Valuable and Precision Instruments of Central South University,China
文摘Poly (methyl methacrylate) (PMMA) brushes were synthesized from silicon wafers via surface initiated atom transfer radical polymerization (SI-ATRP). Energy disperse spectroscopy (EDS) and atomic force microscopy (AFM) confirmed that PMMA brushes were successfully prepared on the silicon wafers, and the surface became more hydrophobic according to the contact angle of 69~. It is found that CuCI/1, 1, 4, 7, 10, 10-hexamethyl triethylenetetramine (HMTETA) system is more suitable than CuBr/N, N, N′, N″, N′″-pentamethyl diethylenetriamine (PMDETA) system to control the free radical polymerization of MMA in solution. Nevertheless, better control on the thickness of PMMA brushes was achieved in CuBr/PMDETA than in CuC1/HMTETA due to higher activity and better reversibility of the former system.
基金supported by the National Natural Science Foundation of China(Grant Nos.21307101 and 21301015)the Science & Technology Department of Sichuan Province(Pillar Program)(Grant No.2013FZ0060)+1 种基金Education Department of Sichuan Province(Grant No.15ZA0392)the Project of Postgraduate Degree Construction,Southwest University for Nationalities(Grant No.2015XWD-S0703)
文摘Fenton reaction based on Fe2+-H2O2 system has been widely applied in water remediation, but the obvious drawbacks largely hinder its practical uses. Alternatively, heterogeneous nanomaterials with proper surface modification could be used as Fenton-like catalysts. Surface doping of Ti O2 could concentrate the pollutants surrounding the Fe3O4 catalyst, which might benefit the catalytic performance of Fe3O4. Herein, we reported that Ti O2-doped Fe3O4 nanoparticles(NPs) could be used as high-performance Fenton-like catalyst for dye decoloration in near neutral environment, where the doping of Ti O2 on Fe3O4 surface dramatically improved the catalytic activity of Fe3O4 in Fenton-like reaction. Ti O2-doped Fe3O4 NPs catalyzed the decomposition of H2O2 to oxidize methylene blue without external energy supply, resulting in effective decoloration. Ti O2-doped Fe3O4 NPs showed high catalytic activity under various p H values and even in the presence of radical scavenger. More catalysts and H2O2 would facilitate the decoloration. At higher temperature, the decoloration became faster and more effective. The implication to the environmental applications of Ti O2-doped Fe3O4 NPs is discussed.