To obtain accurate forms and surfaces in free surface grinding, it is important to provide grinding conditions suitable for a curved surface. A grinding support system for the free surface (GSX-F) is proposed to hel...To obtain accurate forms and surfaces in free surface grinding, it is important to provide grinding conditions suitable for a curved surface. A grinding support system for the free surface (GSX-F) is proposed to help the operator grind a free surface with the high accuracy and the high productivity. To succeed in free surface grinding, the property of a ball type wheel must be known. Therefore, a basic study of free surface grinding with a ball type wheel is carried out based on the grinding center (GC). Some working points for achieving sufficient accuracy in free surface grinding are discussed. GSX-F is constructed using the patch division method and is used to test grinding. Reasonable results are obtained.展开更多
The technique of adaptive tree mesh is an effective way to reduce computational cost through automatic adjustment of cell size according to necessity. In the present study, the 2D numerical N-S solver based on the ada...The technique of adaptive tree mesh is an effective way to reduce computational cost through automatic adjustment of cell size according to necessity. In the present study, the 2D numerical N-S solver based on the adaptive quadtree mesh system was extended to a 3D one, in which a spatially adaptive oetree mesh system and multiple particle level set method were adopted for the convenience to deal with the air-water-structure multiple-medium coexisting domain. The stretching process of a dumbbell was simulated and the results indicate that the meshes are well adaptable to the free surface. The collapsing process of water column impinging a circle cylinder was simulated and from the results, it can be seen that the processes of fluid splitting and merging are properly simulated. The interaction of second-order Stokes waves with a square cylinder was simulated and the obtained drag force is consistent with the result by the Morison's wave force formula with the coefficient values of the stable drag component and the inertial force component bein~ set as 2.54.展开更多
文摘To obtain accurate forms and surfaces in free surface grinding, it is important to provide grinding conditions suitable for a curved surface. A grinding support system for the free surface (GSX-F) is proposed to help the operator grind a free surface with the high accuracy and the high productivity. To succeed in free surface grinding, the property of a ball type wheel must be known. Therefore, a basic study of free surface grinding with a ball type wheel is carried out based on the grinding center (GC). Some working points for achieving sufficient accuracy in free surface grinding are discussed. GSX-F is constructed using the patch division method and is used to test grinding. Reasonable results are obtained.
基金Supported by the National Natural Science Foundation of China(No.51379143 and No.51109018)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(No.51021004)+1 种基金the Open Foundation of Key Laboratory of Water-Sediment Science and Water Disaster Prevention of Hunan Province(No.2014SS01)the Open Foundation of State Key Laboratory of Hydraulic Engineering Simulation and Safety(No.HSSKLTJU-201208)
文摘The technique of adaptive tree mesh is an effective way to reduce computational cost through automatic adjustment of cell size according to necessity. In the present study, the 2D numerical N-S solver based on the adaptive quadtree mesh system was extended to a 3D one, in which a spatially adaptive oetree mesh system and multiple particle level set method were adopted for the convenience to deal with the air-water-structure multiple-medium coexisting domain. The stretching process of a dumbbell was simulated and the results indicate that the meshes are well adaptable to the free surface. The collapsing process of water column impinging a circle cylinder was simulated and from the results, it can be seen that the processes of fluid splitting and merging are properly simulated. The interaction of second-order Stokes waves with a square cylinder was simulated and the obtained drag force is consistent with the result by the Morison's wave force formula with the coefficient values of the stable drag component and the inertial force component bein~ set as 2.54.