At 105 K, strontium titanate is known to undergo an antiferrodistortive transition transform-ing from cubic to tetragonal structure as a result of the rotation of the oxygen octahedral around a cubic axe. Based on the...At 105 K, strontium titanate is known to undergo an antiferrodistortive transition transform-ing from cubic to tetragonal structure as a result of the rotation of the oxygen octahedral around a cubic axe. Based on the Curie principle, the order parameter is determined to be a third-order complete symmetry polarization tensor. To take into account of quantum effects,the dielectric permittivity is measured from Landau free energy, and the Curie Weiss-type behavior is analyzed. From crystallization chemistry viewpoint, the dielectric behavior at low temperature is connected to small radius of Sr^2+, which is much easier to move around the oxygen octahedral than Ba^2+ in BaTiO3 or Pb^2+ in PbTiO3.展开更多
In this paper we report on recent development in the areas of optical vortices generated by micro-optical elements and applications of optical vortices, including optical manipulation, radial polarization and secure f...In this paper we report on recent development in the areas of optical vortices generated by micro-optical elements and applications of optical vortices, including optical manipulation, radial polarization and secure free space optical communication展开更多
α-pinene is the most abundant monoterpene that represents an important family of volatile organic compounds.Molecular identification of key transient compounds during theα-pinene ozonolysis has been proven to be a c...α-pinene is the most abundant monoterpene that represents an important family of volatile organic compounds.Molecular identification of key transient compounds during theα-pinene ozonolysis has been proven to be a challenging experimental target because of a large number of intermediates and products involved.Here we exploit the recently developed hybrid instruments that integrate aerosol mass spectrometry with a vacuum ultraviolet free-electron laser to study theα-pinene ozonolysis.The experiments ofα-pinene ozonolysis are performed in an indoor smog chamber,with reactor having a volume of 2 m^(3) which is made of fluorinated ethylene propylene film.Distinct mass spectral peaks provide direct experimental signatures of previously unseen compounds produced from the reaction ofα-pinene with O_(3).With the aid of quantum chemical calculations,plausible mechanisms for the formation of these new compounds are proposed.These findings provide crucial information on fundamental understanding of the initial steps ofα-pinene oxidation and the subsequent processes of new particle formation.展开更多
Spectroscopic characterization of clusters is crucial to understanding the structures and reaction mechanisms at the microscopic level,but it has been proven to be a grand challenge for neutral clusters because the ab...Spectroscopic characterization of clusters is crucial to understanding the structures and reaction mechanisms at the microscopic level,but it has been proven to be a grand challenge for neutral clusters because the absence of a charge makes it di伍cult for the size selection and detection.Infrared(IR)spectroscopy based on threshold photoionization using a tunable vacuum ultraviolet free electron laser(VUV-FEL)has recently been developed in the lab.The IR-VUV depletion and IR+VUV enhancement spectroscopic techniques open new avenues for size-selected IR spectroscopies of a large variety of neutral clusters without confinement(i.e.,an ultraviolet chromophore,a messenger tag,or a host matrix).The spectroscopic principles have been demonstrated by investigations of some neutral water clusters and some metal carbonyls.Here,the spectroscopic principles and their applications for neutral clusters are reviewed.展开更多
The scalability of routing architectures for large networks is one of the biggest challenges that the Internet faces today.Greedy routing,in which each node is assigned a locator used as a distance metric,recently rec...The scalability of routing architectures for large networks is one of the biggest challenges that the Internet faces today.Greedy routing,in which each node is assigned a locator used as a distance metric,recently received increased attention from researchers and is considered as a potential solution for scalable routing.In this paper,LMD—a local minimum driven method is proposed to compute the topology-based locator.To eliminate the negative effect of the " quasi" greedy property—transfer routes longer than the shortest routes,a two-stage routing strategy is introduced,which combines the greedy routing with source routing.The greedy routing path discovered and compressed in the first stage is then used by the following source-routing stage.Through extensive evaluations,based on synthetic topologies as well as on a snapshot of the real Internet AS(autonomous system)topology,it is shown that LMD guarantees 100%delivery rate on large networks with low stretch.展开更多
文摘At 105 K, strontium titanate is known to undergo an antiferrodistortive transition transform-ing from cubic to tetragonal structure as a result of the rotation of the oxygen octahedral around a cubic axe. Based on the Curie principle, the order parameter is determined to be a third-order complete symmetry polarization tensor. To take into account of quantum effects,the dielectric permittivity is measured from Landau free energy, and the Curie Weiss-type behavior is analyzed. From crystallization chemistry viewpoint, the dielectric behavior at low temperature is connected to small radius of Sr^2+, which is much easier to move around the oxygen octahedral than Ba^2+ in BaTiO3 or Pb^2+ in PbTiO3.
文摘In this paper we report on recent development in the areas of optical vortices generated by micro-optical elements and applications of optical vortices, including optical manipulation, radial polarization and secure free space optical communication
基金financially supported by the National Natural Science Foundation of China(No.22125303,No.92061203,and No.21688102)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB17000000)+2 种基金Dalian Institute of Chemical Physics(DICP DCLS201701)Chinese Academy of Sciences(No.GJJSTD20190002)K.C.Wong Education Foundation(No.GJTD-2018-06)。
文摘α-pinene is the most abundant monoterpene that represents an important family of volatile organic compounds.Molecular identification of key transient compounds during theα-pinene ozonolysis has been proven to be a challenging experimental target because of a large number of intermediates and products involved.Here we exploit the recently developed hybrid instruments that integrate aerosol mass spectrometry with a vacuum ultraviolet free-electron laser to study theα-pinene ozonolysis.The experiments ofα-pinene ozonolysis are performed in an indoor smog chamber,with reactor having a volume of 2 m^(3) which is made of fluorinated ethylene propylene film.Distinct mass spectral peaks provide direct experimental signatures of previously unseen compounds produced from the reaction ofα-pinene with O_(3).With the aid of quantum chemical calculations,plausible mechanisms for the formation of these new compounds are proposed.These findings provide crucial information on fundamental understanding of the initial steps ofα-pinene oxidation and the subsequent processes of new particle formation.
基金This work was supported by the National Natural Science Foundation of China(No.92061203 and No.21688102)the Strategic Priority Research Program of Chinese Academy of Sciences(XDB17000000)+3 种基金International Partnership Program of Chinese Academy of Sciences(121421KYSB20170012)Chinese Academy of Sciences(GJJSTD20190002)K.C.Wong Education Foundation(GJTD-2018-06)Dalian Institute of Chemical Physics(DICP DCLS201702).
文摘Spectroscopic characterization of clusters is crucial to understanding the structures and reaction mechanisms at the microscopic level,but it has been proven to be a grand challenge for neutral clusters because the absence of a charge makes it di伍cult for the size selection and detection.Infrared(IR)spectroscopy based on threshold photoionization using a tunable vacuum ultraviolet free electron laser(VUV-FEL)has recently been developed in the lab.The IR-VUV depletion and IR+VUV enhancement spectroscopic techniques open new avenues for size-selected IR spectroscopies of a large variety of neutral clusters without confinement(i.e.,an ultraviolet chromophore,a messenger tag,or a host matrix).The spectroscopic principles have been demonstrated by investigations of some neutral water clusters and some metal carbonyls.Here,the spectroscopic principles and their applications for neutral clusters are reviewed.
基金Supported by the National High Technology Research and Development Program of China(No.2013AA013501)the National Program on Key Basic Research Project(No.2012CB315801)+1 种基金the National Natural Science Foundation of China(No.61133015)the Science and Technology on Information Transmission and Dissemination in Communication Networks Laboratory,CETC54
文摘The scalability of routing architectures for large networks is one of the biggest challenges that the Internet faces today.Greedy routing,in which each node is assigned a locator used as a distance metric,recently received increased attention from researchers and is considered as a potential solution for scalable routing.In this paper,LMD—a local minimum driven method is proposed to compute the topology-based locator.To eliminate the negative effect of the " quasi" greedy property—transfer routes longer than the shortest routes,a two-stage routing strategy is introduced,which combines the greedy routing with source routing.The greedy routing path discovered and compressed in the first stage is then used by the following source-routing stage.Through extensive evaluations,based on synthetic topologies as well as on a snapshot of the real Internet AS(autonomous system)topology,it is shown that LMD guarantees 100%delivery rate on large networks with low stretch.