Turbulent flow field of the free jet with circular nozzle and wedged nozzles is measured using hot wire anemometry with resolution higher than the smallest turbulence time scale. Wavelet analysis is employed to perfor...Turbulent flow field of the free jet with circular nozzle and wedged nozzles is measured using hot wire anemometry with resolution higher than the smallest turbulence time scale. Wavelet analysis is employed to perform multi-scale decomposition of instantaneous turbulence fluctuating velocity signals, and the energy distribution of the turbulent multi-scale eddy structures over scales is studied using wavelet coefficients. Investigation of the multi-scale eddy structures of circular jet and various wedged jets reveals the transport of the energy of these wedged jets in the space from the axis to the side of the jet, as compared with the circular jet. Furthermore, not only the eddy structures at the wedge tines in the near field are crashed, but also the interactions such as eddy structure union and entrainment take place at different longitudinal and normal locations along with the development of the jets because of the existence of wedges.展开更多
Effects of insertion of tandem wire coil elements used as turbulator on heat transfer and turbulent flow friction characteristics in a uniform heat-flux square duct are experimentally investigated in this work. The ex...Effects of insertion of tandem wire coil elements used as turbulator on heat transfer and turbulent flow friction characteristics in a uniform heat-flux square duct are experimentally investigated in this work. The experiment is conducted for turbulent flow with the Reynolds number from 4000 to 25000. The wire coil element is inserted into the duct with a view to generating a swirl flow that assists to wash up the flow trapped in the duct corners and then increase the heat transfer rate of the test duct. Apart from the full-length coil, 1D and 2D length coil elements placed in tandem inside the duct with various free-space lengths are introduced to reduce the friction loss. The results obtained from these wire coil element inserts are also compared with those from the smooth duct. The experimental results reveal that the use of wire coil inserts for the full-length coil, 1D and 2D coil elements with a short free-space length leads to a considerable increase in heat transfer and friction loss over the smooth duct with no insert. The full-length wire coil provides higher heat transfer and friction factor than the tandem wire coil elements under the same operating conditions. Also, performance evaluation criteria to assess the real benefits in using the wire coil insert into the square duct are determined.展开更多
The suction side boundary layer evolution of a high-lift low-pressure turbine cascade has been experimentally in- vestigated at low and high free-stream turbulence intensity conditions. Measurements have been carded o...The suction side boundary layer evolution of a high-lift low-pressure turbine cascade has been experimentally in- vestigated at low and high free-stream turbulence intensity conditions. Measurements have been carded out in order to analyze the boundary layer transition and separation processes at a low Reynolds nttmber, under both steady and unsteady inflows. Static pressure distributions along the blade surfaces as well as total pressure distri- butions in a downstream tangential plane have been measured to evaluate the overall aerodynamic efficiency of the blade for the different conditions. Particle. Image Velocimetry has been adopted to analyze the time-mean and time-varying velocity fields. The flow field has been surveyed in two orthogonal planes (a blade-to-blade plane and a wall-parallel one). These measurements allow the identification of the Kelvin-Helmholtz large scale cohe- rent structures shed as a consequence of the boundary layer laminar separation under steady inflow, as well as the investigation of the three-dimensional effects induced by the intermittent passage of low and high speed streaks. A close inspection of the time-mean velocity profiles as well as of the boundary layer integral parameters helps to characterize the suction side boundary layer state, thus justifying the influence of free-stream turbulence intensity on the blade aerodynamic losses measured under steady and unsteady inflows.展开更多
To facilitate the efficient support of quality-of-service(Qo S)for promising free-space optical(FSO)communication systems,it is essential to model and analyze FSO channels in terms of delay Qo S.However,most existing ...To facilitate the efficient support of quality-of-service(Qo S)for promising free-space optical(FSO)communication systems,it is essential to model and analyze FSO channels in terms of delay Qo S.However,most existing works focus on the average capacity and outage capacity for FSO,which are not enough to characterize the effective transmission data rate when delay-sensitive service is applied.In this paper,the effective capacity of FSO communication systems under statistical Qo S provisioning constraints is investigated to meet heterogeneous traffic demands.A novel closed-form expression for effective capacity is derived under the combined effects of atmospheric turbulence conditions,pointing errors,beam widths,detector sizes and Qo S exponents.The obtained results reveal the effects of some significant parameters on effective capacity,which can be used for the design of FSO systems carrying a wide range of services with diverse Qo S requirements.展开更多
基金Supported by the National Natural Science Foundation of China (No. 10472081 and No. 10232020)
文摘Turbulent flow field of the free jet with circular nozzle and wedged nozzles is measured using hot wire anemometry with resolution higher than the smallest turbulence time scale. Wavelet analysis is employed to perform multi-scale decomposition of instantaneous turbulence fluctuating velocity signals, and the energy distribution of the turbulent multi-scale eddy structures over scales is studied using wavelet coefficients. Investigation of the multi-scale eddy structures of circular jet and various wedged jets reveals the transport of the energy of these wedged jets in the space from the axis to the side of the jet, as compared with the circular jet. Furthermore, not only the eddy structures at the wedge tines in the near field are crashed, but also the interactions such as eddy structure union and entrainment take place at different longitudinal and normal locations along with the development of the jets because of the existence of wedges.
文摘Effects of insertion of tandem wire coil elements used as turbulator on heat transfer and turbulent flow friction characteristics in a uniform heat-flux square duct are experimentally investigated in this work. The experiment is conducted for turbulent flow with the Reynolds number from 4000 to 25000. The wire coil element is inserted into the duct with a view to generating a swirl flow that assists to wash up the flow trapped in the duct corners and then increase the heat transfer rate of the test duct. Apart from the full-length coil, 1D and 2D length coil elements placed in tandem inside the duct with various free-space lengths are introduced to reduce the friction loss. The results obtained from these wire coil element inserts are also compared with those from the smooth duct. The experimental results reveal that the use of wire coil inserts for the full-length coil, 1D and 2D coil elements with a short free-space length leads to a considerable increase in heat transfer and friction loss over the smooth duct with no insert. The full-length wire coil provides higher heat transfer and friction factor than the tandem wire coil elements under the same operating conditions. Also, performance evaluation criteria to assess the real benefits in using the wire coil insert into the square duct are determined.
文摘The suction side boundary layer evolution of a high-lift low-pressure turbine cascade has been experimentally in- vestigated at low and high free-stream turbulence intensity conditions. Measurements have been carded out in order to analyze the boundary layer transition and separation processes at a low Reynolds nttmber, under both steady and unsteady inflows. Static pressure distributions along the blade surfaces as well as total pressure distri- butions in a downstream tangential plane have been measured to evaluate the overall aerodynamic efficiency of the blade for the different conditions. Particle. Image Velocimetry has been adopted to analyze the time-mean and time-varying velocity fields. The flow field has been surveyed in two orthogonal planes (a blade-to-blade plane and a wall-parallel one). These measurements allow the identification of the Kelvin-Helmholtz large scale cohe- rent structures shed as a consequence of the boundary layer laminar separation under steady inflow, as well as the investigation of the three-dimensional effects induced by the intermittent passage of low and high speed streaks. A close inspection of the time-mean velocity profiles as well as of the boundary layer integral parameters helps to characterize the suction side boundary layer state, thus justifying the influence of free-stream turbulence intensity on the blade aerodynamic losses measured under steady and unsteady inflows.
基金supported by the Jilin Provincial Science & Technology Department of China(No.20130413052GH)
文摘To facilitate the efficient support of quality-of-service(Qo S)for promising free-space optical(FSO)communication systems,it is essential to model and analyze FSO channels in terms of delay Qo S.However,most existing works focus on the average capacity and outage capacity for FSO,which are not enough to characterize the effective transmission data rate when delay-sensitive service is applied.In this paper,the effective capacity of FSO communication systems under statistical Qo S provisioning constraints is investigated to meet heterogeneous traffic demands.A novel closed-form expression for effective capacity is derived under the combined effects of atmospheric turbulence conditions,pointing errors,beam widths,detector sizes and Qo S exponents.The obtained results reveal the effects of some significant parameters on effective capacity,which can be used for the design of FSO systems carrying a wide range of services with diverse Qo S requirements.