期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
天体运行轨道的背景介质理论导引与自相似分形测度计算的分维微积分基础 被引量:1
1
作者 阎坤 《地球物理学进展》 CSCD 北大核心 2007年第2期451-462,共12页
通过讨论天体运行背景介质理论的连续轨道及离散轨道这二个研究方向的基础假设,介绍了天体运行轨道的具体方程形式及理论框架概要;进一步地通过讨论天体运行轨道Binet方程的一般形式及其行星近日点进动角的解,给出了连续轨道理论与Newto... 通过讨论天体运行背景介质理论的连续轨道及离散轨道这二个研究方向的基础假设,介绍了天体运行轨道的具体方程形式及理论框架概要;进一步地通过讨论天体运行轨道Binet方程的一般形式及其行星近日点进动角的解,给出了连续轨道理论与Newton理论及Einstein广义相对论的联系与区别;通过讨论天体运行轨道的分维扩展方程,给出了包括太阳系行星、天王星卫星、地球卫星、绕月航天器等在内的离散轨道(稳定性轨道)方程及其预言数据.特别地,作为对天体在较为广泛区域作用曲线的初步探讨推论,指出仅由天体引力难以形成质量密度趋于无穷大的理想黑洞.通过讨论一般函数的分维导数的位置假设及幂函数的分维导数的形式假设,进一步明晰了幂函数的分维导数、分维微分及分维积分的具体方程形式,给出分维导数与分数阶导数的区别,随后讨论了基于一般分形测度的分维微积分形式定义导出的自相似分形的测度计算方程具体形式,给出了其与目前Hausdorff测度方法(覆盖方法)的区别,并对包括三分Cantor集合、Koch曲线、Sierpinski垫片及正交十字星形等自相似分形在内的测度进行了计算分析. 展开更多
关键词 天体运行轨道 背景介质理论 连续轨道 离散轨道 自相似分形测度 分维微积分 分维导数
下载PDF
Memory Function and Fractional Intergral Associated to the Random Self-similar Fractal 被引量:1
2
作者 LIANG Hong-liang,LIU Xiao-shu(Department of Mathematics, Shangqiu Teacher’s College, Shangqiu 476000, China) 《Chinese Quarterly Journal of Mathematics》 CSCD 2003年第2期186-191,共6页
For a physics system which exhibits memory,if memory is preserved only at points of random self-similar fractals,we define random memory functions and give the connection between the expectation of flux and the fracti... For a physics system which exhibits memory,if memory is preserved only at points of random self-similar fractals,we define random memory functions and give the connection between the expectation of flux and the fractional integral.In particular,when memory sets degenerate to Cantor type fractals or non-random self-similar fractals our results coincide with that of Nigmatullin and Ren et al. 展开更多
关键词 random self-similar fractals memory functions memory measures Laplace transform
下载PDF
Dimension of Slices Through Fractals with Initial Cubic Pattern
3
作者 Lifeng XI Wen WU Ying XIONG 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2017年第5期1145-1178,共34页
In this paper, the Hausdorff dimension of the intersection of self-similar fractals in Euclidean space R^n generated from an initial cube pattern with an(n-m)-dimensional hyperplane V in a fixed direction is discussed... In this paper, the Hausdorff dimension of the intersection of self-similar fractals in Euclidean space R^n generated from an initial cube pattern with an(n-m)-dimensional hyperplane V in a fixed direction is discussed. The authors give a sufficient condition which ensures that the Hausdorff dimensions of the slices of the fractal sets generated by "multirules" take the value in Marstrand's theorem, i.e., the dimension of the self-similar sets minus one. For the self-similar fractals generated with initial cube pattern, this sufficient condition also ensures that the projection measure μVis absolutely continuous with respect to the Lebesgue measure L^m. When μV《 L^m, the connection of the local dimension ofμVand the box dimension of slices is given. 展开更多
关键词 SLICE Self-similar set DIMENSION FRACTAL
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部