For a given self-similar set ERd satisfying the strong separation condition,let Aut(E) be the set of all bi-Lipschitz automorphisms on E.The authors prove that {fAut(E):blip(f)=1} is a finite group,and the gap propert...For a given self-similar set ERd satisfying the strong separation condition,let Aut(E) be the set of all bi-Lipschitz automorphisms on E.The authors prove that {fAut(E):blip(f)=1} is a finite group,and the gap property of bi-Lipschitz constants holds,i.e.,inf{blip(f)=1:f∈Aut(E)}>1,where lip(g)=sup x,y∈E x≠y(|g(x)-g(y)|)/|x-y| and blip(g)=max(lip(g),lip(g-1)).展开更多
基金supported by the National Natural Science Foundation of China (Nos.10671180,10571140,10571063,10631040,11071164) and the Morningside Center of Mathematics
文摘For a given self-similar set ERd satisfying the strong separation condition,let Aut(E) be the set of all bi-Lipschitz automorphisms on E.The authors prove that {fAut(E):blip(f)=1} is a finite group,and the gap property of bi-Lipschitz constants holds,i.e.,inf{blip(f)=1:f∈Aut(E)}>1,where lip(g)=sup x,y∈E x≠y(|g(x)-g(y)|)/|x-y| and blip(g)=max(lip(g),lip(g-1)).