A numerical simulation method based on inverse discrete Fourier transform(IDFT)is presented for generating Gaussian rough surface with a desired autocorrelation function(ACF). The probability density function of the h...A numerical simulation method based on inverse discrete Fourier transform(IDFT)is presented for generating Gaussian rough surface with a desired autocorrelation function(ACF). The probability density function of the height distribution of the generated Gaussian surface and the root-mean-square height of the rough surface are also considered. It is found that the height distribution of the generated surface follows the Gaussian distribution, the deviation of the root-mean-square height of the modeled rough surface from the desired value is smaller than that of Patir's method, and the autocorrelation function of the modeled surface is also in good agreement with the desired autocorrelation function. Compared with Patir's method, the modeled surface generated by the IDFT method is in better agreement with the desired autocorrelation function, especially when the correlation length is relatively large.展开更多
基金Supported by the National Basic Research Program of China("973"Program,No.2013CB632305)
文摘A numerical simulation method based on inverse discrete Fourier transform(IDFT)is presented for generating Gaussian rough surface with a desired autocorrelation function(ACF). The probability density function of the height distribution of the generated Gaussian surface and the root-mean-square height of the rough surface are also considered. It is found that the height distribution of the generated surface follows the Gaussian distribution, the deviation of the root-mean-square height of the modeled rough surface from the desired value is smaller than that of Patir's method, and the autocorrelation function of the modeled surface is also in good agreement with the desired autocorrelation function. Compared with Patir's method, the modeled surface generated by the IDFT method is in better agreement with the desired autocorrelation function, especially when the correlation length is relatively large.