期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于SHO-SA算法的案例推理预测模型特征权重优化
被引量:
4
1
作者
严爱军
丁凯
《北京工业大学学报》
CAS
CSCD
北大核心
2022年第4期355-366,共12页
针对案例推理(case-based reasoning, CBR)检索过程中特征权重的分配结果直接影响CBR预测模型性能的问题,提出了一种基于自私牧群优化-模拟退火(selfish herd optimizer-simulated annealing, SHO-SA)算法的特征权重优化分配方法.首先,...
针对案例推理(case-based reasoning, CBR)检索过程中特征权重的分配结果直接影响CBR预测模型性能的问题,提出了一种基于自私牧群优化-模拟退火(selfish herd optimizer-simulated annealing, SHO-SA)算法的特征权重优化分配方法.首先,将CBR预测模型的均方根误差定义为SHO算法和SA算法中权重寻优的适应度;然后,通过SHO算法的牧群运动、捕食及恢复等步骤得到种群内最小均方根误差所对应的权重;最后,采用SA算法对上述权重进行随机搜索,从而获得特征权重的近似最优解.采用加州大学欧文分校(University of California Irvine, UCI)数据集中的5个标准回归数据集进行实验,结果表明该方法与一些典型的优化方法相比可以显著提高CBR预测模型的精度,说明SA算法能够改善SHO算法陷入局部最优的问题.
展开更多
关键词
案例推理
案例检索
特征权重
自私牧群优化
模拟退火
分配权重
下载PDF
职称材料
题名
基于SHO-SA算法的案例推理预测模型特征权重优化
被引量:
4
1
作者
严爱军
丁凯
机构
北京工业大学信息学部
数字社区教育部工程研究中心
城市轨道交通北京实验室
出处
《北京工业大学学报》
CAS
CSCD
北大核心
2022年第4期355-366,共12页
基金
国家自然科学基金资助项目(61873009)
北京市自然科学基金资助项目(4192009)。
文摘
针对案例推理(case-based reasoning, CBR)检索过程中特征权重的分配结果直接影响CBR预测模型性能的问题,提出了一种基于自私牧群优化-模拟退火(selfish herd optimizer-simulated annealing, SHO-SA)算法的特征权重优化分配方法.首先,将CBR预测模型的均方根误差定义为SHO算法和SA算法中权重寻优的适应度;然后,通过SHO算法的牧群运动、捕食及恢复等步骤得到种群内最小均方根误差所对应的权重;最后,采用SA算法对上述权重进行随机搜索,从而获得特征权重的近似最优解.采用加州大学欧文分校(University of California Irvine, UCI)数据集中的5个标准回归数据集进行实验,结果表明该方法与一些典型的优化方法相比可以显著提高CBR预测模型的精度,说明SA算法能够改善SHO算法陷入局部最优的问题.
关键词
案例推理
案例检索
特征权重
自私牧群优化
模拟退火
分配权重
Keywords
case-based reasoning(CBR)
case retrieval
feature weight
selfish herd optimizer(SHO)
simulated annealing
weight allocation
分类号
U461 [机械工程—车辆工程]
TP308 [自动化与计算机技术—计算机系统结构]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于SHO-SA算法的案例推理预测模型特征权重优化
严爱军
丁凯
《北京工业大学学报》
CAS
CSCD
北大核心
2022
4
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部