Automatic signature generation approaches have been widely applied in recent traffic classification.However,they are not suitable for LightWeight Deep Packet Inspection(LW_DPI) since their generated signatures are mat...Automatic signature generation approaches have been widely applied in recent traffic classification.However,they are not suitable for LightWeight Deep Packet Inspection(LW_DPI) since their generated signatures are matched through a search of the entire application data.On the basis of LW_DPI schemes,we present two Hierarchical Clustering(HC) algorithms:HC_TCP and HC_UDP,which can generate byte signatures from TCP and UDP packet payloads respectively.In particular,HC_TCP and HC_ UDP can extract the positions of byte signatures in packet payloads.Further,in order to deal with the case in which byte signatures cannot be derived,we develop an algorithm for generating bit signatures.Compared with the LASER algorithm and Suffix Tree(ST)-based algorithm,the proposed algorithms are better in terms of both classification accuracy and speed.Moreover,the experimental results indicate that,as long as the application-protocol header exists,it is possible to automatically derive reliable and accurate signatures combined with their positions in packet payloads.展开更多
The Deep Packet Inspection(DPI)method is a popular method that can accurately identify the flow data and its corresponding application.Currently,the DPI method is widely used in common network management systems.Howev...The Deep Packet Inspection(DPI)method is a popular method that can accurately identify the flow data and its corresponding application.Currently,the DPI method is widely used in common network management systems.However,the major limitation of DPI systems is that their signature library is mainly extracted manually,which makes it hard to efficiently obtain the signature of new applications.Hence,in this paper,we propose an automatic signature extraction mechanism using Principal Component Analysis(PCA)technology,which is able to extract the signature automatically.In the proposed method,the signatures are expressed in the form of serial consistent sequences constructed by principal components instead of normally separated substrings in the original data extracted from the traditional methods.Extensive experiments based on numerous sets of data have been carried out to evaluate the performance of the proposed scheme,and the results prove that the newly proposed method can achieve good performance in terms of accuracy and efficiency.展开更多
Multi-proxy signature schemes allow the original signer to delegate his/her signing power to n proxy signers such that all proxy signers must corporately generate a valid proxy signature on behalf of the original sign...Multi-proxy signature schemes allow the original signer to delegate his/her signing power to n proxy signers such that all proxy signers must corporately generate a valid proxy signature on behalf of the original signer. We first propose a multi-proxy signature scheme based on discrete logarithms and then adapt it to the elliptic curve cryptosystem. With the integration of self-certified public-key systems and the message recovery signature schemes,our proposed schemes have the following advan-tages:(1) They do not require the signing message to be transmitted,since the verifier can recover it from the signature;(2) The authentication of the public keys,verification of the signature,and recovery of the message can be simultaneously carried out in a single logical step;(3) No certificate is needed for validating the public keys. Further,the elliptic curve variant with short key lengths especially suits the cryptographic applications with limited computing power and storage space,e.g.,smart cards. As compared with the previous work that was implemented with the certificate-based public-key systems,the proposed schemes give better performance in terms of communication bandwidth and computation efforts.展开更多
We study thermal spin squeezing (TSS) and thermal global entanglement (TGE) in a general Heisenberg spin chain, in the presence of Dzyaloshinskii-Moriya interaction and an external magnetic field. We derive an inequal...We study thermal spin squeezing (TSS) and thermal global entanglement (TGE) in a general Heisenberg spin chain, in the presence of Dzyaloshinskii-Moriya interaction and an external magnetic field. We derive an inequality associating the squeezing parameter and the global concurrence, which establishes (TSS) as a signature of (TGE). The inequality reduces to equality for particular symmetric chains which also associates TSS with bipartite entanglement in such systems. We also check the results by presenting two numerical examples.展开更多
基金supported by the National Key Basic Research Program of China (973 Program) under Grant No. 2011CB302605the National High Technical Research and Development Program of China (863 Program) underGrants No. 2010AA012504,No. 2011AA010705+1 种基金the National Natural Science Foundation of China under Grant No. 60903166the National Science and Technology Support Program under Grants No. 2012BAH37B00,No. 2012-BAH37B01
文摘Automatic signature generation approaches have been widely applied in recent traffic classification.However,they are not suitable for LightWeight Deep Packet Inspection(LW_DPI) since their generated signatures are matched through a search of the entire application data.On the basis of LW_DPI schemes,we present two Hierarchical Clustering(HC) algorithms:HC_TCP and HC_UDP,which can generate byte signatures from TCP and UDP packet payloads respectively.In particular,HC_TCP and HC_ UDP can extract the positions of byte signatures in packet payloads.Further,in order to deal with the case in which byte signatures cannot be derived,we develop an algorithm for generating bit signatures.Compared with the LASER algorithm and Suffix Tree(ST)-based algorithm,the proposed algorithms are better in terms of both classification accuracy and speed.Moreover,the experimental results indicate that,as long as the application-protocol header exists,it is possible to automatically derive reliable and accurate signatures combined with their positions in packet payloads.
基金supported by the National Natural Science Foundation of China under Grant No.61003282Beijing Higher Education Young Elite Teacher Project+3 种基金China Next Generation Internet(CNGI)Project"Research and Trial on Evolving Next Generation Network Intelligence Capability Enhancement(NICE)"the National Basic Research Program(973 Program)under Grant No.2009CB320-505the National Science and Technology Major Project"Research about Architecture of Mobile Internet"under Grant No.2011ZX03-002-001-01the National High Technology Research and Development Program(863 Program)under Grant No.2011AA010704
文摘The Deep Packet Inspection(DPI)method is a popular method that can accurately identify the flow data and its corresponding application.Currently,the DPI method is widely used in common network management systems.However,the major limitation of DPI systems is that their signature library is mainly extracted manually,which makes it hard to efficiently obtain the signature of new applications.Hence,in this paper,we propose an automatic signature extraction mechanism using Principal Component Analysis(PCA)technology,which is able to extract the signature automatically.In the proposed method,the signatures are expressed in the form of serial consistent sequences constructed by principal components instead of normally separated substrings in the original data extracted from the traditional methods.Extensive experiments based on numerous sets of data have been carried out to evaluate the performance of the proposed scheme,and the results prove that the newly proposed method can achieve good performance in terms of accuracy and efficiency.
基金Project (No. 94-2213-E-182-019) supported by the National Science Council, Taiwan, China
文摘Multi-proxy signature schemes allow the original signer to delegate his/her signing power to n proxy signers such that all proxy signers must corporately generate a valid proxy signature on behalf of the original signer. We first propose a multi-proxy signature scheme based on discrete logarithms and then adapt it to the elliptic curve cryptosystem. With the integration of self-certified public-key systems and the message recovery signature schemes,our proposed schemes have the following advan-tages:(1) They do not require the signing message to be transmitted,since the verifier can recover it from the signature;(2) The authentication of the public keys,verification of the signature,and recovery of the message can be simultaneously carried out in a single logical step;(3) No certificate is needed for validating the public keys. Further,the elliptic curve variant with short key lengths especially suits the cryptographic applications with limited computing power and storage space,e.g.,smart cards. As compared with the previous work that was implemented with the certificate-based public-key systems,the proposed schemes give better performance in terms of communication bandwidth and computation efforts.
文摘We study thermal spin squeezing (TSS) and thermal global entanglement (TGE) in a general Heisenberg spin chain, in the presence of Dzyaloshinskii-Moriya interaction and an external magnetic field. We derive an inequality associating the squeezing parameter and the global concurrence, which establishes (TSS) as a signature of (TGE). The inequality reduces to equality for particular symmetric chains which also associates TSS with bipartite entanglement in such systems. We also check the results by presenting two numerical examples.