Complex behavior in a selective aging simple neuron model based on small world networks is investigated. The basic elements of the model are endowed with the main features of a neuron function. The structure of the se...Complex behavior in a selective aging simple neuron model based on small world networks is investigated. The basic elements of the model are endowed with the main features of a neuron function. The structure of the selective aging neuron model is discussed. We also give some properties of the new network and find that the neuron model displays a power-law behavior. If the brain network is small world-like network, the mean avalanche size is almost the same unless the aging parameter is big enough.展开更多
Effects of aging and self-organized criticality in a pulse-coupled integrate-and-fire neuron model based on small world networks have been studied. We give the degree distribution of aging network, average shortest p...Effects of aging and self-organized criticality in a pulse-coupled integrate-and-fire neuron model based on small world networks have been studied. We give the degree distribution of aging network, average shortest path length, the diameter of our network, and the clustering coefficient, and find that our neuron model displays the power-law behavior, and with the number of added links increasing, the effects of aging become smaller and smaller. This shows that if the brain works at the self-organized criticality state, it can relieve some effects caused by aging.展开更多
基金National Natural Science Foundation of China under Grant No.10675060
文摘Complex behavior in a selective aging simple neuron model based on small world networks is investigated. The basic elements of the model are endowed with the main features of a neuron function. The structure of the selective aging neuron model is discussed. We also give some properties of the new network and find that the neuron model displays a power-law behavior. If the brain network is small world-like network, the mean avalanche size is almost the same unless the aging parameter is big enough.
基金The project supported by National Natural Science Foundation of China under Grant No. 10675060
文摘Effects of aging and self-organized criticality in a pulse-coupled integrate-and-fire neuron model based on small world networks have been studied. We give the degree distribution of aging network, average shortest path length, the diameter of our network, and the clustering coefficient, and find that our neuron model displays the power-law behavior, and with the number of added links increasing, the effects of aging become smaller and smaller. This shows that if the brain works at the self-organized criticality state, it can relieve some effects caused by aging.