期刊文献+
共找到770篇文章
< 1 2 39 >
每页显示 20 50 100
基于自组织映射神经网络模型的区域经济评价——以延安市为例 被引量:6
1
作者 郝俊卿 王雁林 《地域研究与开发》 CSSCI 北大核心 2005年第1期58-61,共4页
县域经济评价分类是区域经济发展研究中的重要课题。针对县域经济评价分类与其影响因素之间复杂的非线性关系,文章提出应用自组织映射神经网络模型来评价县域经济发展实力。以延安市为例,建立了实用的县域经济评价指标体系,应用建立的... 县域经济评价分类是区域经济发展研究中的重要课题。针对县域经济评价分类与其影响因素之间复杂的非线性关系,文章提出应用自组织映射神经网络模型来评价县域经济发展实力。以延安市为例,建立了实用的县域经济评价指标体系,应用建立的自组织映射神经网络模型进行了评价分类。针对分类结果,提出了延安市各县区县域经济协调发展的对策。 展开更多
关键词 区域经济 自组织映射神经网络模型 评价 延安市
下载PDF
基于自组织映射神经网络的淮河流域生态系统服务簇时空变化特征 被引量:1
2
作者 常耀文 吴迪 +3 位作者 李欢 刘霞 王蕴鹏 郭家瑜 《生态学报》 CAS CSCD 北大核心 2024年第11期4544-4557,共14页
生态系统服务簇的识别是区域生态系统服务管理与优化的关键。量化了2000、2010、2020年淮河流域产水量(WY),水源涵养(WC),土壤保持(SC),生境质量(HQ),水质净化(WP),净初级生产力(NPP)和碳储量(CS)7种生态系统服务。并基于自组织映射神... 生态系统服务簇的识别是区域生态系统服务管理与优化的关键。量化了2000、2010、2020年淮河流域产水量(WY),水源涵养(WC),土壤保持(SC),生境质量(HQ),水质净化(WP),净初级生产力(NPP)和碳储量(CS)7种生态系统服务。并基于自组织映射神经网络(SOFM)识别了生态系统服务簇,探讨了生态系统服务簇的时空变化特征。结果表明:(1)2000—2020年,WP,NPP与WC呈上升趋势,WC的增幅最大;CS与HQ呈下降趋势。淮河流域各生态系统服务具有时空异质性,生态系统服务高值区多位于西南部山区与东北部丘陵山地地区。(2)识别了5个生态系统服务簇:核心生态服务簇,WP服务簇,WY服务簇,NPP服务簇与生态过渡服务簇。核心生态服务簇与生态过渡服务簇的面积总体增加,流域西南部山区与东北部丘陵山地地区生态系统服务提升,2000—2020年,WY服务簇与NPP服务簇间的转移面积较大,WY服务簇面积减少达60.09%,NPP服务簇面积显著增加,2020年占整个流域面积的57.02%。研究结果不仅有助于清晰认识淮河流域生态系统服务簇的空间分布格局及动态变化,也为探索淮河流域可持续的生态系统管理与规划决策奠定了基础。 展开更多
关键词 生态系统服务 自组织映射神经网络(SOFM) 生态系统服务簇 淮河流域 InVEST模型
下载PDF
基于胃组织病理图像数据集的卷积神经网络模型对胃癌的早期预测价值
3
作者 孙伟 史航 +1 位作者 黄臻 法良玲 《川北医学院学报》 CAS 2024年第7期877-881,共5页
目的:探究胃组织病理图像数据集的卷积神经网络(CNN)模型对胃癌(GC)的早期预测价值,开发并验证GC早期预测模型。方法:将154例GC患者按照分期不同分为早期组(n=87)和中晚期组(n=67)。采用Logistic回归分析临床协变量;使用卷积神经网络(C... 目的:探究胃组织病理图像数据集的卷积神经网络(CNN)模型对胃癌(GC)的早期预测价值,开发并验证GC早期预测模型。方法:将154例GC患者按照分期不同分为早期组(n=87)和中晚期组(n=67)。采用Logistic回归分析临床协变量;使用卷积神经网络(CNN)特征提取模型,搭建CNN预测模型;受试者工作特征(ROC)曲线评估区分度,校准曲线评估准确度。结果:年龄、基础疾病、幽门螺旋菌感染、红细胞计数(RBC)、白细胞计数(WBC)是GC的独立危险因素。最佳的CNN特征提取模型为3个卷积层、2个池化层和1个全连接层。CNN的各项指标均优于其他模型;校准曲线分析,CNN模型的拟合效果显著。结论:基于胃组织病理图像数据集的CNN模型具有良好的预测性能,临床可行性较好。 展开更多
关键词 胃癌 组织病理图像 卷积神经网络模型 影像组学
下载PDF
量子自组织特征映射神经网络
4
作者 叶梓 《福建电脑》 2024年第1期21-26,共6页
自组织特征映射是典型的无监督神经网络算法。它运用竞争学习策略实现数据分类。然而当网络中神经元个数为多项式时,自组织特征映射算法训练容易受到计算力挑战。为了降低算法训练的时间复杂度,本文提出了一个量子经典混合的自组织特征... 自组织特征映射是典型的无监督神经网络算法。它运用竞争学习策略实现数据分类。然而当网络中神经元个数为多项式时,自组织特征映射算法训练容易受到计算力挑战。为了降低算法训练的时间复杂度,本文提出了一个量子经典混合的自组织特征映射神经网络算法,利用量子叠加性和量子纠缠性对经典算法进行加速。在神经网络训练过程中,算法利用量子相位估计和Grover搜索算法并行实现相似度计算和标签提取。理论分析表明,本文提出的量子算法相比于经典算法在数据维度上具有指数加速。 展开更多
关键词 量子神经网络 量子相位估计 Grover搜索算法 自组织特征映射
下载PDF
基于改进SSA-BP神经网络的钠硫电池拆解刀具温度预测模型研究
5
作者 屈朝阳 胡光忠 +1 位作者 王平 薛祥东 《机床与液压》 北大核心 2024年第9期100-107,127,共9页
钠硫电池中含有大量的高纯度钠,在自动化拆解过程中存在燃烧、爆炸等安全风险。针对钠硫电池在车削拆解时存在的安全性问题,提出一种改进SSA-BP神经网络算法来预测刀具加工的最高温度。利用ABAQUS软件计算出刀具加工的实时温度,通过电... 钠硫电池中含有大量的高纯度钠,在自动化拆解过程中存在燃烧、爆炸等安全风险。针对钠硫电池在车削拆解时存在的安全性问题,提出一种改进SSA-BP神经网络算法来预测刀具加工的最高温度。利用ABAQUS软件计算出刀具加工的实时温度,通过电池拆解实验验证仿真数据的可靠性;然后以仿真温度数据建立样本,利用Tent混沌映射对SSA-BP神经网络算法进行优化,建立刀具温度仿真预测模型。实验结果表明:该仿真预测模型收敛速度快,鲁棒性强,模型误差小。 展开更多
关键词 钠硫电池 刀具温度预测模型 改进SSA-BP神经网络 Tent混沌映射
下载PDF
自组织特征映射神经网络在岩爆分级预测中的应用
6
作者 付自国 李化 +2 位作者 邓建辉 陈菲 王佳信 《地下空间与工程学报》 CSCD 北大核心 2023年第1期334-342,共9页
岩爆是地下工程一种常见的动力灾害。为了提高岩爆预测精度和探究岩爆参数之间的潜在关系,本文借签一种自组织特征映射神经网络(SOFM),构建了岩爆烈度分级预测的无监督学习模型。结合国内外岩爆判据,选取围岩最大切应力、单轴抗压强度... 岩爆是地下工程一种常见的动力灾害。为了提高岩爆预测精度和探究岩爆参数之间的潜在关系,本文借签一种自组织特征映射神经网络(SOFM),构建了岩爆烈度分级预测的无监督学习模型。结合国内外岩爆判据,选取围岩最大切应力、单轴抗压强度、单轴抗拉强度、应力系数、脆性系数及弹性能量指数6个参数作为评价指标。将46个典型的岩爆案例输入到竞争层为2×2拓扑结构的SOFM模型中进行训练。结果表明:SOFM模型具有可靠的聚类能力,其正判率为90%;与现有的有监督学习模型进行了比较,验证了本文建立的SOFM模型的优越性;最后,对SOFM聚类结果分析发现,脆性系数对轻微、中等及强岩爆的影响权重均较大,选取的6个评价指标对强岩爆和中等岩爆区分并不明显。 展开更多
关键词 岩爆分级 自组织特征映射 神经网络 预测
下载PDF
基于自组织特征映射模型(SOFM)网络的中国自然资源生态安全区划 被引量:1
7
作者 邹易 蒙吉军 +3 位作者 吴英迪 魏婵娟 程浩然 马宇翔 《生态学报》 CAS CSCD 北大核心 2024年第1期171-182,共12页
自然资源生态安全是国家安全的重要组成部分,自然资源生态安全区划对保障区域可持续发展提供了重要途径。基于自然资源数据、生态环境数据和相关区划资料,从生态敏感性与生态服务重要性角度构建了自然资源生态安全评价指标体系,进而揭... 自然资源生态安全是国家安全的重要组成部分,自然资源生态安全区划对保障区域可持续发展提供了重要途径。基于自然资源数据、生态环境数据和相关区划资料,从生态敏感性与生态服务重要性角度构建了自然资源生态安全评价指标体系,进而揭示了中国自然资源生态安全的空间格局;通过建立区划的原则和指标,按照一级区主要反映自然资源空间分布格局,二级区主要揭示自然资源生态安全水平的差异,采用SOFM网络制订了中国自然资源生态安全区划方案。结果显示:(1)中国自然资源生态安全水平整体偏低,以中警与重警状态区域为主,安全和较安全状态的区域仅占24.22%,其中低安全等级区多分布于400mm等降水量线以西的干旱、半干旱区,高安全等级区则集中分布于水热资源与生物资源较为丰富的东南部地区;(2)中国自然资源生态安全区划方案包括8个一级区与27个二级区,总结归纳各大区自然资源的特征和威胁生态安全的问题,并针对二级区自然资源生态安全状况提出了对策建议。研究结果可为分区、分类推进全国自然资源可持续利用和国土空间优化提供理论支持与决策依据。 展开更多
关键词 自然资源生态安全 自组织特征映射模型(SOFM)网络 区划方案
下载PDF
基于时间序列和神经网络的电力设备状态异常检测方法 被引量:2
8
作者 丁江桥 文屹 +3 位作者 吕黔苏 张迅 范强 黄军凯 《电测与仪表》 北大核心 2024年第2期185-190,共6页
为进一步提高电力设备异常检测方法对设备信息的利用率,发现更多潜在的设备故障,结合大数据分析技术和设备评估技术,提出了一种基于时间序列和神经网络的状态数据异常检测方法。通过时间序列自回归模型和自组织映射神经网络将连续的电... 为进一步提高电力设备异常检测方法对设备信息的利用率,发现更多潜在的设备故障,结合大数据分析技术和设备评估技术,提出了一种基于时间序列和神经网络的状态数据异常检测方法。通过时间序列自回归模型和自组织映射神经网络将连续的电力设备数据离散为单个序列,计算状态变量在时间轴上的转移概率,通过状态转移概率和聚类算法快速检测数据异常。通过实验对该方法的有效性进行验证。结果表明,该方法可以快速、有效地检测电力设备异常状态。 展开更多
关键词 电力设备 时间序列自回归模型 自组织映射神经网络 转移概率 异常检测
下载PDF
基于自组织映射神经网络的蛋白质序列分析模型 被引量:3
9
作者 刘珑龙 马蒙 刘毛娟 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第7期130-135,共6页
为了对蛋白质序列进行更精确合理地相似性分析,本文将氨基酸的排列方式与其理化性质相结合,提出了一种基于自组织映射神经网络的聚类模型。首先,采用Wang和Wang的方法把蛋白质序列转化为一条5-字母序列,并将5个字母均匀分布在以原点为... 为了对蛋白质序列进行更精确合理地相似性分析,本文将氨基酸的排列方式与其理化性质相结合,提出了一种基于自组织映射神经网络的聚类模型。首先,采用Wang和Wang的方法把蛋白质序列转化为一条5-字母序列,并将5个字母均匀分布在以原点为圆心的单位圆周上,得到蛋白质序列的位置坐标x,y。然后,结合氨基酸的3个理化指标,进而用一个5-维向量来表示一个氨基酸。最后,运用自组织映射神经网络对不同的蛋白质向量进行聚类分析。本文最后的数值试验部分对9个不同物种的线粒体NADH脱氢酸的蛋白质序列进行了相似性分析,实验结果在一定程度上验证了模型的有效性。 展开更多
关键词 蛋白质序列 理化指标 自组织映射神经网络 相似性分析
下载PDF
2004年欧洲杯足球球队技战术能力评价的自组织特征映射神经网络模型的研究 被引量:6
10
作者 王铁生 钟平 《广州体育学院学报》 北大核心 2005年第3期64-66,91,共4页
通过对2004年欧洲杯足球赛16支球队的进球、射门、射门命中率、角球、控球、成功传球、抢断、被抢断、犯规、越位和失球等11项攻防技术指标进行主成分分析的基础上,确定球队技战术能力评价的综合指标。引入自组织特征映射神经网络模型,... 通过对2004年欧洲杯足球赛16支球队的进球、射门、射门命中率、角球、控球、成功传球、抢断、被抢断、犯规、越位和失球等11项攻防技术指标进行主成分分析的基础上,确定球队技战术能力评价的综合指标。引入自组织特征映射神经网络模型,提出了基于自组织特征映射网络的球队分类方法,该方法在无指导的情况下,通过对自组织学习,实现了合理、科学的球队分类。分类结果客观反映了2004年欧洲杯各队技战术的综合实力,揭示了世界足球运动的发展趋势,并探索出一种合理评价球队技战术水平的方法。 展开更多
关键词 足球 2004年欧洲杯 自组织特征映射 神经网络 攻防指标
下载PDF
基于SOM特征聚类及RBF神经网络的电力负荷预测方法研究 被引量:1
11
作者 郝文斌 孟志高 +3 位作者 张勇 谢波 彭攀 卫佳奇 《电力需求侧管理》 2024年第2期49-54,共6页
为了提高电力系统负荷预测的精度,维护电力系统运行的安全稳定性,提出一种基于特征向量的自组织映射聚类和改进的径向基函数神经网络相结合的电力负荷预测模型。通过提取能够体现每日电力负荷特性的特征向量,对样本进行聚类,采用具有相... 为了提高电力系统负荷预测的精度,维护电力系统运行的安全稳定性,提出一种基于特征向量的自组织映射聚类和改进的径向基函数神经网络相结合的电力负荷预测模型。通过提取能够体现每日电力负荷特性的特征向量,对样本进行聚类,采用具有相似特征的数据作为神经网络的训练样本,提高了样本规律性。采用粒子群算法(particle swarm optimization,PSO)修正神经网络粒子群速度及位置,以克服梯度下降、局部最优等问题对网络预测精度的影响。基于某地配电网电力负荷数据,验证了所提模型的有效性及良好的适应性。 展开更多
关键词 负荷预测 自组织映射聚类 径向基函数神经网络 粒子群优化算法
下载PDF
基于自组织映射神经网络的变异体约简方法
12
作者 王曙燕 高雨 《西安邮电大学学报》 2023年第5期50-55,共6页
针对变异测试中产生大量变异体导致变异测试成本过高的问题,提出一种基于自组织映射神经网络的变异体约简方法。利用弱变异转换法获得变异体杀死矩阵,将其作为变异体的特征数据,使用自组织映射神经网络对变异体聚类,并将相似的变异体放... 针对变异测试中产生大量变异体导致变异测试成本过高的问题,提出一种基于自组织映射神经网络的变异体约简方法。利用弱变异转换法获得变异体杀死矩阵,将其作为变异体的特征数据,使用自组织映射神经网络对变异体聚类,并将相似的变异体放在一类簇中,根据变异体的杀死度从每类簇中选择最难杀死的变异体组成新的变异体集合,从而约简变异体的数量。测试结果表明,所提方法在保证变异测试有效性不受影响的同时可以约简平均80%的变异体,降低了变异测试成本。 展开更多
关键词 软件测试 自组织映射神经网络 变异测试 变异分支 变异体约简
下载PDF
基于自组织映射的卷积神经网络架构研究
13
作者 赵义爱 《无线互联科技》 2023年第10期155-157,共3页
辅助驾驶和自动驾驶技术将对人类的生活方式带来巨大影响,而交通标志识别技术则是其中至关重要的一环。为了进一步完善交通标志识别理论,文章提出了一种融合自组织映射的卷积神经网络架构。自组织映射能将图像样本量化至拓扑空间中,从... 辅助驾驶和自动驾驶技术将对人类的生活方式带来巨大影响,而交通标志识别技术则是其中至关重要的一环。为了进一步完善交通标志识别理论,文章提出了一种融合自组织映射的卷积神经网络架构。自组织映射能将图像样本量化至拓扑空间中,从而对微小的变化提供降维和不变性处理。该方法与卷积神经网络相结合,能充分利用卷积神经网络对平移、旋转、缩放和形变的部分不变性能,从而提高该架构的效率和准确度。经过初步测试,本系统在200个测试样本中表现出98.5%的准确率,取得了显著的成效。 展开更多
关键词 卷积神经网络 交通标志识别 自组织映射 深度学习
下载PDF
一种基于自组织特征映射的前馈式神经网络模型及其算法 被引量:1
14
作者 欧阳聪星 方正瑚 +1 位作者 陈抗生 乐光新 《电子学报》 EI CAS CSCD 北大核心 1998年第7期165-168,共4页
本文提出了一种基于自组织特征映射的前债式人工神经网络模型,介绍了其结构和算法.该模型基于自组织特征映射机理,用统计方法获得输入信号对不同模式类别的隶属程度,并由此进行模式分类判决计算.该神经网络模型还导出了“模式地形... 本文提出了一种基于自组织特征映射的前债式人工神经网络模型,介绍了其结构和算法.该模型基于自组织特征映射机理,用统计方法获得输入信号对不同模式类别的隶属程度,并由此进行模式分类判决计算.该神经网络模型还导出了“模式地形图”的概念,可以实现数据聚类分析的可视化.经计算机模拟验证,上述算法和概念是有效的. 展开更多
关键词 人工神经网络 模型 自组织特征映射 聚类分析
下载PDF
基于迁移学习和Bi-LSTM神经网络的桥梁温度-应变映射建模方法 被引量:1
15
作者 方佳畅 黄天立 +1 位作者 李苗 王亚飞 《振动与冲击》 EI CSCD 北大核心 2023年第12期126-134,186,共10页
为快速构建并准确预测温度作用引起的斜拉桥主梁应变用于结构状态评估,基于某大跨度斜拉桥主梁超过1年的温度和应变监测数据,提出了一种基于迁移学习和双向长短时记忆(bi-directional long short-term memory,Bi-LSTM)神经网络的斜拉桥... 为快速构建并准确预测温度作用引起的斜拉桥主梁应变用于结构状态评估,基于某大跨度斜拉桥主梁超过1年的温度和应变监测数据,提出了一种基于迁移学习和双向长短时记忆(bi-directional long short-term memory,Bi-LSTM)神经网络的斜拉桥温度-应变映射模型建立方法。首先,利用解析模态分解(analytical mode decomposition,AMD)去噪应变数据,得到仅由温度引起的应变响应;其次,选择温度和某一测点应变数据构成数据集,采用Bi-LSTM神经网络训练该数据集,并通过网络结构和超参数优化建立温度-应变Bi-LSTM基准模型;最后,利用迁移学习方法,将已训练好的基准模型中部分参数迁移到其他温度-应变数据集,建立相应的温度-应变映射被迁移模型,并与未采用迁移学习的神经网络训练方法进行对比。研究结果表明,相比直接建立的温度-应变Bi-LSTM神经网络映射模型,采用迁移学习方法建立的被迁移模型,其拟合精度均高于所用的基准模型,且训练时间短,预测误差小。 展开更多
关键词 结构健康监测 大跨度斜拉桥 温度-应变映射模型 迁移学习 双向长短时记忆(Bi-LSTM)神经网络
下载PDF
基于最优城市匹配神经网络模型的PM_(2.5)插值方法 被引量:1
16
作者 周佩 杨凡 韦骏 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2023年第5期793-800,共8页
为解决部分城市PM_(2.5)浓度数据缺值严重,无法通过训练自身数据得到预报模型的问题,提出用相似城市的预报模型实现目标城市历史数据的填补。依据23个城市的气象数据、城市发展数据和PM_(2.5)浓度数据,建立基于自组织映射(SOM)和门控循... 为解决部分城市PM_(2.5)浓度数据缺值严重,无法通过训练自身数据得到预报模型的问题,提出用相似城市的预报模型实现目标城市历史数据的填补。依据23个城市的气象数据、城市发展数据和PM_(2.5)浓度数据,建立基于自组织映射(SOM)和门控循环单元(GRU)神经网络的PM_(2.5)日均浓度数据插值模型,并分别利用该插值模型和传统插值方法(线性插值和样条插值)对不同类型的缺值数据进行填补,对比两者的填补效果。实验结果表明,基于SOM神经网络的城市匹配模型可以准确地匹配出目标城市的相似城市;当缺值数据少于5天时,利用传统插值方法的填补效果优于GRU插值模型;当缺值数据多于5天时,GRU插值模型更胜任长时间缺测数据的填补工作。 展开更多
关键词 PM_(2.5) 自组织映射(SOM) 门控循环单元(GRU) 插值模型
下载PDF
基于自组织映射神经网络的VANET组网算法 被引量:11
17
作者 吴怡 杨琼 +2 位作者 吴庆祥 沈连丰 林潇 《通信学报》 EI CSCD 北大核心 2011年第12期136-145,共10页
研究了应用于汽车辅助驾驶、无人驾驶等智能交通领域的车辆组网方法,提出一种将自组织映射神经网络算法应用于车辆自组织网络进行车辆组网的算法,该算法根据车辆定时发出的消息中位置、行驶方向等信息对车辆按目的地、行驶方向的相似性... 研究了应用于汽车辅助驾驶、无人驾驶等智能交通领域的车辆组网方法,提出一种将自组织映射神经网络算法应用于车辆自组织网络进行车辆组网的算法,该算法根据车辆定时发出的消息中位置、行驶方向等信息对车辆按目的地、行驶方向的相似性进行组网,组网后的车辆主要接收并处理与之在同一个网络中的车辆的信息。理论分析和仿真结果表明,组网后的系统传输时延远低于未组网通信情况,吞吐量有显著提高。 展开更多
关键词 车辆自组织网络 自组织映射 神经网络 组网
下载PDF
TGSOM:一种用于数据聚类的动态自组织映射神经网络 被引量:28
18
作者 王莉 王正欧 《电子与信息学报》 EI CSCD 北大核心 2003年第3期313-319,共7页
针对传统Kohonen自组织特征映射(SOFM)神经网络模型结构需预先指定的限制,提出一种新的树形动态自组织映射(TGSOM)神经网络,当用于数据挖掘时该网络以其生成速度快可视性好具有显著优越性。该文详尽描述了该网络模型的生成算法,研究了... 针对传统Kohonen自组织特征映射(SOFM)神经网络模型结构需预先指定的限制,提出一种新的树形动态自组织映射(TGSOM)神经网络,当用于数据挖掘时该网络以其生成速度快可视性好具有显著优越性。该文详尽描述了该网络模型的生成算法,研究了算法中扩展因子的作用。扩展因子与训练样本数据的维数无关,其作用是控制网络的生长,扩展因子可以反映数据聚类的精度,即扩展因子值的大小与聚类精度的高低成正比。在聚类的不同阶段使用大小不等的扩展因子还可以实现层次聚类。 展开更多
关键词 TGSOM 神经网络 数据聚类 数据挖掘 自组织特征映射 树形动态自组织映射
下载PDF
用于模式识别的前馈式神经网络区域映射模型 被引量:10
19
作者 王雪峰 孙学全 冯英浚 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2000年第5期73-74,77,共3页
提出了一种新的用于模式识别问题的前馈式神经网络模型———区域映射模型 .该模型将输入空间每一类的特征参数区域映射成输出空间中对应的一个区域。模型具有训练和实际应用中分类标准相一致的性质 ,使模式识别分类更为合理和自然 ,相... 提出了一种新的用于模式识别问题的前馈式神经网络模型———区域映射模型 .该模型将输入空间每一类的特征参数区域映射成输出空间中对应的一个区域。模型具有训练和实际应用中分类标准相一致的性质 ,使模式识别分类更为合理和自然 ,相应的误差函数的改变可以加快网络的训练速度 . 展开更多
关键词 模式识别 BP神经网络模型 区域映射模型 学习算法
下载PDF
基于自组织映射神经网络的中药注射剂质量快速鉴别方法 被引量:14
20
作者 刘雪松 施朝晟 +1 位作者 程翼宇 瞿海斌 《分析化学》 SCIE EI CAS CSCD 北大核心 2007年第10期1483-1486,共4页
将近红外光谱分析技术与人工神经网络相结合,研究提出一种基于自组织映射神经网络的近红外光谱神经元分类模型,用于对中药注射剂产品的近红外光谱进行计算分析,可实现对注射剂质量的快速鉴别。以3个不同厂家生产的参麦注射剂为研究对象... 将近红外光谱分析技术与人工神经网络相结合,研究提出一种基于自组织映射神经网络的近红外光谱神经元分类模型,用于对中药注射剂产品的近红外光谱进行计算分析,可实现对注射剂质量的快速鉴别。以3个不同厂家生产的参麦注射剂为研究对象,考察本方法的分类能力,其分类正确率达到96.4%,优于参与比较的判别式偏最小二乘法(90.5%)、反向传播神经网络(88.1%)和支持向量机(90.5%)。 展开更多
关键词 中药分析 质量鉴别 近红外光谱分析 自组织映射神经网络 模式分类
下载PDF
上一页 1 2 39 下一页 到第
使用帮助 返回顶部