期刊文献+
共找到171篇文章
< 1 2 9 >
每页显示 20 50 100
TGSOM:一种用于数据聚类的动态自组织映射神经网络 被引量:28
1
作者 王莉 王正欧 《电子与信息学报》 EI CSCD 北大核心 2003年第3期313-319,共7页
针对传统Kohonen自组织特征映射(SOFM)神经网络模型结构需预先指定的限制,提出一种新的树形动态自组织映射(TGSOM)神经网络,当用于数据挖掘时该网络以其生成速度快可视性好具有显著优越性。该文详尽描述了该网络模型的生成算法,研究了... 针对传统Kohonen自组织特征映射(SOFM)神经网络模型结构需预先指定的限制,提出一种新的树形动态自组织映射(TGSOM)神经网络,当用于数据挖掘时该网络以其生成速度快可视性好具有显著优越性。该文详尽描述了该网络模型的生成算法,研究了算法中扩展因子的作用。扩展因子与训练样本数据的维数无关,其作用是控制网络的生长,扩展因子可以反映数据聚类的精度,即扩展因子值的大小与聚类精度的高低成正比。在聚类的不同阶段使用大小不等的扩展因子还可以实现层次聚类。 展开更多
关键词 TGsom 神经网络 数据 数据挖掘 自组织特征映射 树形动态自组织映射
下载PDF
一种量子自组织特征映射网络模型及聚类算法 被引量:13
2
作者 李盼池 李士勇 《量子电子学报》 CAS CSCD 北大核心 2007年第4期463-468,共6页
提出一种量子自组织特征映射网络模型及聚类算法。量子神经元的输入和权值均为量子比特,输出为实数,量子自组织特征映射网络由输入层和竞争层组成。首先将聚类样本转换成量子态形式并提交给输入层,完成聚类样本的输入;然后计算样本量子... 提出一种量子自组织特征映射网络模型及聚类算法。量子神经元的输入和权值均为量子比特,输出为实数,量子自组织特征映射网络由输入层和竞争层组成。首先将聚类样本转换成量子态形式并提交给输入层,完成聚类样本的输入;然后计算样本量子态与相应权值量子态的相似系数,提取聚类样本所隐含的模式特征,并对其进行自组织,在竞争层将聚类结果表现出来。采用量子门更新量子权值,分无监督和有监督两个阶段完成网络的训练。仿真实验结果表明该模型及算法明显优于普通自组织特征映射网络。 展开更多
关键词 量子光学 量子自组织特征映射网络 量子算法 量子神经元
下载PDF
基于遗传算法和自组织特征映射网络的文本聚类方法 被引量:10
3
作者 覃晓 元昌安 《计算机应用》 CSCD 北大核心 2008年第3期757-760,共4页
自组织映射(SOM)算法作为一种聚类和高维可视化的无监督学习算法,为进行中文Web文档聚类提供了有力的手段。但是SOM算法天然存在着对网络初始权值敏感的缺陷,从而影响聚类质量。为此,引进遗传算法对SOM网络加以优化。提出了以遗传算法优... 自组织映射(SOM)算法作为一种聚类和高维可视化的无监督学习算法,为进行中文Web文档聚类提供了有力的手段。但是SOM算法天然存在着对网络初始权值敏感的缺陷,从而影响聚类质量。为此,引进遗传算法对SOM网络加以优化。提出了以遗传算法优化SOM网络的文本聚类算法(GSTCA);进行了对比实验,实验表明,改进后的算法GSTCA比SOM算法在Web中文文档聚类中具有更高的准确率,其F-measure值平均提高了14%,同时,实验还表明,GSTCA算法对网络初始权值是不敏感的,从而提高了算法的稳定性。 展开更多
关键词 自组织特征映射 遗传算法 文本
下载PDF
自组织映射(SOM)聚类算法的研究 被引量:16
4
作者 余健 郭平 《现代计算机》 2007年第3期7-8,33,共3页
通过自组织映射神经网络实现的聚类算法能将任意维数的输入信号模式转变为一维或二维的离散映射,以拓扑有序的方式自适应实现这个变换。介绍自组织映射聚类算法的原理,通过实验进行仿真,结果表明自组织映射聚类算法是可行有效的。
关键词 自组织映射 som 神经网络 算法
下载PDF
融合SOM神经网络与K-means聚类算法的用户信用画像研究
5
作者 罗博炜 罗万红 谭家驹 《铁路计算机应用》 2024年第7期14-19,共6页
为提高现阶段基于K-Means聚类算法的用户信用画像模型的准确性和实时性,提出一种融合自组织映射(SOM,Self-Organizing Map)神经网络与K-Means聚类算法的改进方法。通过SOM对用户数据进行降维和特征提取,直接获得最优聚类数目后再用K-Me... 为提高现阶段基于K-Means聚类算法的用户信用画像模型的准确性和实时性,提出一种融合自组织映射(SOM,Self-Organizing Map)神经网络与K-Means聚类算法的改进方法。通过SOM对用户数据进行降维和特征提取,直接获得最优聚类数目后再用K-Means算法进行聚类分析。通过真实在线借贷平台数据对所提方法进行验证,结果表明,该方法可提升用户信用画像分析的质量,更好地满足金融数据分析中对实时管理和风险控制的要求,为金融机构提供精准的决策支持。 展开更多
关键词 用户信用画像 som神经网络 K-MEANS算法 时间复杂度 风险控制
下载PDF
基于自组织神经网络SOM和K-means聚类算法的图像修复 被引量:4
6
作者 孙震 王兆霞 +1 位作者 白明 张俊生 《科学技术与工程》 北大核心 2012年第8期1790-1794,共5页
近来自然图像的修复已经成了一个热门话题。提出了一种基于K-means聚类算法的自组织神经网络(SOM),称为SOM-K。它首先利用SOM来训练每一个像素的特征向量,并把一幅图像分层。这样就能把每个破损像素分到每层,同时SOM训练后的输出也通过K... 近来自然图像的修复已经成了一个热门话题。提出了一种基于K-means聚类算法的自组织神经网络(SOM),称为SOM-K。它首先利用SOM来训练每一个像素的特征向量,并把一幅图像分层。这样就能把每个破损像素分到每层,同时SOM训练后的输出也通过K-means聚类算法来聚合,分别在各个层中修复破损的像素。最后把修复好的各层溶合到一起。与单独使用SOM相比,SOM-K具有更精确的分类能力。 展开更多
关键词 图像修复 自组织神经网络 K-MEANS算法
下载PDF
基于粒子群优化和SOM网络的聚类算法研究 被引量:9
7
作者 唐贤伦 仇国庆 +1 位作者 李银国 曹长修 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第5期31-33,37,共4页
利用改进的粒子群优化算法(PSO)的优化性能,结合SOM网络模型,提出了一种基于粒子群优化算法和SOM网络的聚类算法(PSO/SOM),使用PSO对SOM网络进行训练来代替SOM的启发式训练方法.将PSO/SOM算法用于对Wine和Iris等数据集进行模式聚类识别... 利用改进的粒子群优化算法(PSO)的优化性能,结合SOM网络模型,提出了一种基于粒子群优化算法和SOM网络的聚类算法(PSO/SOM),使用PSO对SOM网络进行训练来代替SOM的启发式训练方法.将PSO/SOM算法用于对Wine和Iris等数据集进行模式聚类识别,可以得到较优的聚类识别效果.相比标准SOM算法能有效提高网络映射的准确程度,降低网络的量化误差和拓扑误差,同时也降低了错聚率,实验结果验证了本算法的有效性. 展开更多
关键词 粒子群优化 自组织特征映射网络
下载PDF
基于SOM神经网络的C-均值聚类算法 被引量:6
8
作者 周欢 黄立平 《计算机应用》 CSCD 北大核心 2007年第B06期51-52,共2页
针对C-均值算法存在的缺点,提出了一种基于SOM神经网络的C-均值聚类算法。算法首先根据SOM神经网络自动聚类的优点给出聚类数目和各类中心点,然后将结果作为C-均值算法的初始输入进行进一步聚类,从而得到精确的聚类信息。最后通过试验... 针对C-均值算法存在的缺点,提出了一种基于SOM神经网络的C-均值聚类算法。算法首先根据SOM神经网络自动聚类的优点给出聚类数目和各类中心点,然后将结果作为C-均值算法的初始输入进行进一步聚类,从而得到精确的聚类信息。最后通过试验说明该方法比单独的SOM神经网络和C-均值算法有效。 展开更多
关键词 som网络 C-均值算法
下载PDF
基于多维自组织特征映射的聚类算法研究 被引量:8
9
作者 江波 张黎 《计算机科学》 CSCD 北大核心 2008年第6期181-182,185,共3页
作为神经网络的一种方法,自组织特征映射在数据挖掘、模式分类和机器学习中得到了广泛应用。本文详细讨论了自组织特征映射的聚类算法的工作原理和具体实现算法。通过系统仿真实验分析,SOFMF算法很好地克服了许多聚类算法存在的问题,在... 作为神经网络的一种方法,自组织特征映射在数据挖掘、模式分类和机器学习中得到了广泛应用。本文详细讨论了自组织特征映射的聚类算法的工作原理和具体实现算法。通过系统仿真实验分析,SOFMF算法很好地克服了许多聚类算法存在的问题,在时间复杂度上具有良好的性能。 展开更多
关键词 组织特征映射 数据挖掘 神经网络
下载PDF
自组织映射聚类算法在电信客户细分中的应用 被引量:7
10
作者 吴春旭 鲍满园 苟清龙 《计算机系统应用》 2010年第8期168-172,共5页
将自组织映射SOM(Self Organization Map)聚类算法应用于电信客户细分,并与采用K-means聚类算法得到的结果进行比较。实验表明,SOM可以有效的进行电信客户细分且聚类效果较优,但需付出训练时间的代价。同时对两种算法的复杂度、误差等... 将自组织映射SOM(Self Organization Map)聚类算法应用于电信客户细分,并与采用K-means聚类算法得到的结果进行比较。实验表明,SOM可以有效的进行电信客户细分且聚类效果较优,但需付出训练时间的代价。同时对两种算法的复杂度、误差等进行了分析。 展开更多
关键词 自组织映射 神经网络 电信 客户细分
下载PDF
利用自组织特征映射神经网络进行可视化聚类 被引量:9
11
作者 白耀辉 陈明 《计算机仿真》 CSCD 2006年第1期180-183,共4页
自组织特征映射作为一种神经网络方法,在数据挖掘、机器学习和模式分类中得到了广泛的应用。它将高维输入空间的数据映射到一个低维、规则的栅格上,从而可以利用可视化技术探测数据的固有特性。该文说明了自组织特征映射神经网络的工作... 自组织特征映射作为一种神经网络方法,在数据挖掘、机器学习和模式分类中得到了广泛的应用。它将高维输入空间的数据映射到一个低维、规则的栅格上,从而可以利用可视化技术探测数据的固有特性。该文说明了自组织特征映射神经网络的工作原理和具体实现算法,同时利用一个算例展示了利用自组织特征映射进行聚类时的可视化特性,包括聚类过程的可视化和聚类结果的可视化,这也是自组织特征映射得到广泛应用的原因之一。 展开更多
关键词 自组织特征映射 神经网络 可视化
下载PDF
自组织神经网络和K-means聚类算法的比较分析 被引量:25
12
作者 徐步云 倪禾 《新型工业化》 2014年第7期63-69,共7页
本文主要是研究自组织神经网络作为一种具有拓扑限制的,以特征提取为主要手段的聚类算法,并与传统的K-means算法进行比较分析,并将它们应用于几组人工数据。传统的K-means算法具有计算效率高的优点,但是聚类结果不稳定,初始值对于聚类... 本文主要是研究自组织神经网络作为一种具有拓扑限制的,以特征提取为主要手段的聚类算法,并与传统的K-means算法进行比较分析,并将它们应用于几组人工数据。传统的K-means算法具有计算效率高的优点,但是聚类结果不稳定,初始值对于聚类收敛的结果有一定的影响,相比之下,自组织神经网络由于其引入具有拓扑结构的邻域函数,虽然计算效率比较低,但是可以达到较为稳定的聚类结果,且受初值影响较小。 展开更多
关键词 人工智能 算法 自组织神经网络 K-MEANS
下载PDF
基于自组织特征映射聚类算法的研究与应用 被引量:2
13
作者 李丙春 耿国华 +1 位作者 周明全 朱晓冬 《新疆大学学报(自然科学版)》 CAS 2003年第4期377-381,共5页
讨论了基于自组织特征映射网络聚类算法的基本原理,并给出了基于关系数据库的具体实现方法,通过对实例的具体测试,证明算法是有效的,并对算法的参数进行了讨论.
关键词 自组织特征映射 算法 关系数据库 数据挖掘 数据集 人工智能
下载PDF
基于自组织特征映射神经网络的聚类分析 被引量:10
14
作者 丁硕 常晓恒 巫庆辉 《信息技术》 2014年第6期18-21,共4页
在深入研究自组织特征映射(Self-organizing Feature Mapping,SOFM)神经网络的结构和聚类算法的基础上,阐述了SOFM网络的建立方法。以随机二维向量的聚类为例,利用所建立的SOFM网络模型对输入的随机二维向量进行聚类,并着重研究了输出... 在深入研究自组织特征映射(Self-organizing Feature Mapping,SOFM)神经网络的结构和聚类算法的基础上,阐述了SOFM网络的建立方法。以随机二维向量的聚类为例,利用所建立的SOFM网络模型对输入的随机二维向量进行聚类,并着重研究了输出层神经元拓扑结构、训练步数对聚类结果的影响以及在相同拓扑结构条件下,SOFM网络模型的权值向量的调整过程。仿真结果表明:在输出层神经元节点形式为六边型条件下,输出层神经元的个数越多,SOFM网络模型的聚类结果就越准确;在相同的拓扑结构条件下,训练步数越大,SOFM网络聚类结果越准确,但过大的训练步数对于聚类结果的影响甚微。 展开更多
关键词 自组织特征映射 人工神经网络 拓扑结构
下载PDF
神经网络的特征映射聚类算法研究 被引量:5
15
作者 林金山 林敏 《现代电子技术》 2006年第24期41-43,共3页
自组织特征映射作为一种神经网络方法,在数据挖掘、机器学习和模式分类中得到了广泛应用。他将高维输入空间的数据映射到一个低维、规则的栅格上,从而可以利用可视化技术探测数据的固有特性。说明自组织特征映射神经网络的工作原理和具... 自组织特征映射作为一种神经网络方法,在数据挖掘、机器学习和模式分类中得到了广泛应用。他将高维输入空间的数据映射到一个低维、规则的栅格上,从而可以利用可视化技术探测数据的固有特性。说明自组织特征映射神经网络的工作原理和具体实现算法,并在对已有神经网络聚类分析方法概括和总结的基础上,结合一些实验数据、仿真数据对自组织特征映射算法进行研究,得出了一些有意义的结论。 展开更多
关键词 数据挖掘 神经网络 自组织特征映射 可视化技术
下载PDF
基于Bloch球面旋转的量子自组织网络聚类算法 被引量:1
16
作者 杨淑云 李盼池 《系统仿真学报》 CAS CSCD 北大核心 2015年第5期1105-1111,共7页
为提高自组织网络的聚类能力,提出一种基于Bloch球面旋转的量子自组织网络聚类算法。通过使样本数据作为量子比特相位,将样本映射为Bloch球面上的量子比特,将竞争层权值映射为Bloch球面上随机分布的量子比特;通过计算样本和权值的球面... 为提高自组织网络的聚类能力,提出一种基于Bloch球面旋转的量子自组织网络聚类算法。通过使样本数据作为量子比特相位,将样本映射为Bloch球面上的量子比特,将竞争层权值映射为Bloch球面上随机分布的量子比特;通过计算样本和权值的球面距离最小值,确定获胜节点;通过使获胜节点及其邻域节点在Bloch球面上向着样本旋转来调整这些权值,直到算法收敛。该方法的明显优势在于有较高的聚类精度。以鸢尾属植物样本聚类为例,实验结果表明,提出的方法明显优于传统自组织网络、K-均值聚类等算法。 展开更多
关键词 量子比特 Bloch球面旋转 自组织网络 算法
下载PDF
基于SOM特征聚类及RBF神经网络的电力负荷预测方法研究 被引量:1
17
作者 郝文斌 孟志高 +3 位作者 张勇 谢波 彭攀 卫佳奇 《电力需求侧管理》 2024年第2期49-54,共6页
为了提高电力系统负荷预测的精度,维护电力系统运行的安全稳定性,提出一种基于特征向量的自组织映射聚类和改进的径向基函数神经网络相结合的电力负荷预测模型。通过提取能够体现每日电力负荷特性的特征向量,对样本进行聚类,采用具有相... 为了提高电力系统负荷预测的精度,维护电力系统运行的安全稳定性,提出一种基于特征向量的自组织映射聚类和改进的径向基函数神经网络相结合的电力负荷预测模型。通过提取能够体现每日电力负荷特性的特征向量,对样本进行聚类,采用具有相似特征的数据作为神经网络的训练样本,提高了样本规律性。采用粒子群算法(particle swarm optimization,PSO)修正神经网络粒子群速度及位置,以克服梯度下降、局部最优等问题对网络预测精度的影响。基于某地配电网电力负荷数据,验证了所提模型的有效性及良好的适应性。 展开更多
关键词 负荷预测 自组织映射 径向基函数神经网络 粒子群优化算法
下载PDF
基于自组织聚类和JS散度的RBF神经网络
18
作者 董镇林 伍世虔 +1 位作者 叶健 银开州 《计算机工程与设计》 北大核心 2024年第4期1062-1068,共7页
针对如何确定径向基函数(RBF)神经网络隐层结构这一问题进行研究,提出一种基于自组织聚类和JS散度的RBF神经网络。为解决K-means算法对初始值敏感的问题,提出基于距离的自组织初始聚类,将戴维森堡丁(DBI)指数作为准则函数,进一步提高聚... 针对如何确定径向基函数(RBF)神经网络隐层结构这一问题进行研究,提出一种基于自组织聚类和JS散度的RBF神经网络。为解决K-means算法对初始值敏感的问题,提出基于距离的自组织初始聚类,将戴维森堡丁(DBI)指数作为准则函数,进一步提高聚类精度,得到代表数据集分布特性的隐节点;为解决隐节点冗余和相似的问题,提出一种基于敏感度分析的隐节点删除方法和基于詹森-香农(JS)散度的隐节点合并方法。仿真结果验证了该算法的有效性。 展开更多
关键词 RBF神经网络 隐层结构 自组织 K-MEANS算法 戴维森堡丁指数 敏感度分析 詹森-香农散度
下载PDF
基于自组织聚类和蚁群算法的无线传感器网络路由算法
19
作者 邱立达 《梧州学院学报》 2010年第6期30-35,共6页
根据无线传感网络能量受限的特点,提出一种低能耗路由算法SOC-IACO,算法由自组织聚类算法SOC和改进蚁群算法WAC组成。先通过SOC将节点分簇,选取簇头构造簇头数据链,再通过WAC构造簇内节点数据链。簇内数据沿节点数据链汇聚至簇头、簇头... 根据无线传感网络能量受限的特点,提出一种低能耗路由算法SOC-IACO,算法由自组织聚类算法SOC和改进蚁群算法WAC组成。先通过SOC将节点分簇,选取簇头构造簇头数据链,再通过WAC构造簇内节点数据链。簇内数据沿节点数据链汇聚至簇头、簇头数据沿簇头数据链汇聚至总簇头,由总簇头发送数据至基站。实验表明,由于聚类过程中考虑了节点分布和簇负载均衡并采用双层链路由,SOC-IACO算法能大幅降低节点能耗提高网络寿命。 展开更多
关键词 无线传感器网络 自组织 蚁群算法
下载PDF
基于自组织特征映射和梯度熵聚类的MR脑部图像分割新算法 被引量:4
20
作者 丁力 周啸虎 +1 位作者 陈宇辰 高伟 《中国医疗设备》 2017年第10期21-26,共6页
目的提出一种新颖的基于自组织特征映射和遗传算法的无监督MR脑部图像分割算法。方法本研究算法分为5步:图像预处理去除背景噪声和颅骨部分、提取图像中两类统计特征和几何不变矩、遗传算法降低特征空间维度、训练自组织特征映射完成向... 目的提出一种新颖的基于自组织特征映射和遗传算法的无监督MR脑部图像分割算法。方法本研究算法分为5步:图像预处理去除背景噪声和颅骨部分、提取图像中两类统计特征和几何不变矩、遗传算法降低特征空间维度、训练自组织特征映射完成向量分类和使用梯度熵聚类算法得到分割图像。结果选用国际MR脑图像库和临床实例MR图像进行仿真实验。定性分析表明基于本文算法的分割图像中白质、灰质和脑脊液边界完整清晰;定量评估结果显示本文提出的遗传特征优化算法优于常用的主分量分析法,梯度熵算法所得分割图像优于K-means聚类算法,且本文提出的算法在白质和脑脊液分割方面优于现存最佳的CGMM算法。结论本文提出的分割流程没有涉及任何关于体素分类的先验知识,是一种完全无监督的MR脑部组织自动分割方法,具有很强的稳定性、优越性,且获得高精确性的分割图像。 展开更多
关键词 脑疾病 MR脑部图像 图像分割 自组织特征映射 遗传算法 梯度熵
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部