针对数字语音信号分帧提取MFCC参数,MFCC是Mel频率倒谱系数(Mel Frequency Cepstrum Coefficient,MFCC)。Mel频率是基于人耳听觉特性提出的,它与Hz频率呈非线性对应关系,利用它们之间的这种关系,计算得到Hz频谱特征。将每帧的MFCC作为...针对数字语音信号分帧提取MFCC参数,MFCC是Mel频率倒谱系数(Mel Frequency Cepstrum Coefficient,MFCC)。Mel频率是基于人耳听觉特性提出的,它与Hz频率呈非线性对应关系,利用它们之间的这种关系,计算得到Hz频谱特征。将每帧的MFCC作为矢量进行自组织特征映射神经网络矢量量化及LBG矢量量化,通过实验对二者进行比较。仿真结果表明,自组织特征映射神经网络矢量量化算法得到的码书比LBG算法具有量化误差小、码本尺寸小的特点,进而可以节省存储空间。实验结果表明,文中方法具有一定的实用性。展开更多
采用粒子群优化(PSO)算法优化权重失真指数(LW D I),提出了基于粒子群优化的SOM(PSO-SOM)训练算法.用该算法取代K ohonen提出的启发式训练算法,同时引进核函数,以加强PSO-SOM算法的非线性聚类能力.以某工厂丙烯腈反应器数据为聚类应用...采用粒子群优化(PSO)算法优化权重失真指数(LW D I),提出了基于粒子群优化的SOM(PSO-SOM)训练算法.用该算法取代K ohonen提出的启发式训练算法,同时引进核函数,以加强PSO-SOM算法的非线性聚类能力.以某工厂丙烯腈反应器数据为聚类应用研究对象,研究结果表明,与启发式训练算法相比,PSO-SOM算法能够得到较优的聚类,而且该算法实现简单、便于工程应用,对丙烯腈反应器参数调整以及收率监测具有显著的指导作用.展开更多
文摘针对数字语音信号分帧提取MFCC参数,MFCC是Mel频率倒谱系数(Mel Frequency Cepstrum Coefficient,MFCC)。Mel频率是基于人耳听觉特性提出的,它与Hz频率呈非线性对应关系,利用它们之间的这种关系,计算得到Hz频谱特征。将每帧的MFCC作为矢量进行自组织特征映射神经网络矢量量化及LBG矢量量化,通过实验对二者进行比较。仿真结果表明,自组织特征映射神经网络矢量量化算法得到的码书比LBG算法具有量化误差小、码本尺寸小的特点,进而可以节省存储空间。实验结果表明,文中方法具有一定的实用性。
文摘采用粒子群优化(PSO)算法优化权重失真指数(LW D I),提出了基于粒子群优化的SOM(PSO-SOM)训练算法.用该算法取代K ohonen提出的启发式训练算法,同时引进核函数,以加强PSO-SOM算法的非线性聚类能力.以某工厂丙烯腈反应器数据为聚类应用研究对象,研究结果表明,与启发式训练算法相比,PSO-SOM算法能够得到较优的聚类,而且该算法实现简单、便于工程应用,对丙烯腈反应器参数调整以及收率监测具有显著的指导作用.