A weighted selection combining (WSC) scheme is proposed to improve prediction accuracy for cooperative spectrum prediction in cognitive radio networks by exploiting spatial diversity. First, a genetic algorithm-base...A weighted selection combining (WSC) scheme is proposed to improve prediction accuracy for cooperative spectrum prediction in cognitive radio networks by exploiting spatial diversity. First, a genetic algorithm-based neural network (GANN) is designed to perform spectrum prediction in consideration of both the characteristics of the primary users (PU) and the effect of fading. Then, a fusion selection method based on the iterative self-organizing data analysis (ISODATA) algorithm is designed to select the best local predictors for combination. Additionally, a reliability-based weighted combination rule is proposed to make an accurate decision based on local prediction results considering the diversity of the predictors. Finally, a Gaussian approximation approach is employed to study the performance of the proposed WSC scheme, and the expressions of the global prediction precision and throughput enhancement are derived. Simulation results reveal that the proposed WSC scheme outperforms the other cooperative spectrum prediction schemes in terms of prediction accuracy, and can achieve significant throughput gain for cognitive radio networks.展开更多
利用三维荧光光谱法(3D-EEM)结合平行因子分析(PARAFAC)和自组织神经网络分析(SOM),解析了不同来源水体中不同粒径胶体的荧光特性,同时与挑峰法进行比较,以期寻找一种更好的分析天然胶体来源、粒径、荧光特性间关系的方法.基于PARAFAC模...利用三维荧光光谱法(3D-EEM)结合平行因子分析(PARAFAC)和自组织神经网络分析(SOM),解析了不同来源水体中不同粒径胶体的荧光特性,同时与挑峰法进行比较,以期寻找一种更好的分析天然胶体来源、粒径、荧光特性间关系的方法.基于PARAFAC模型,研究区水体中不同粒径胶体共解析出2个类腐殖质荧光峰(C1和C3)及3个类蛋白荧光峰(C2、C4和C5).其中,300 k Da^1μm分级胶体荧光强度最高,C1、C2、C3组分的荧光强度随粒径增大而增强,C4、C5组分的荧光强度随粒径增大而减弱.不同来源胶体(生活污水:进水和出水;农业污水:大盈和天恩桥;天然水体:吴淞口)的荧光强度变化大致规律为:吴淞口>进水>大盈>天恩桥>出水.SOM分析结果与PARAFAC一致,且可视化程度更高,但EEM-SOM模型存在输入变量多、兼具挑峰法缺点的问题.而PARAFAC-SOM模型不仅兼具了前两者的优点,还具有输入变量少、运行时间短、可靠性高等优点.同时,该模型还成功应用于胶体其他理化参数的分析(Parameters-SOM模型),使得前期工作结果系统性更强、更直观.因此,PARAFAC-SOM模型是相对较好的分析天然胶体来源、粒径、荧光特性间关系的方法.展开更多
基金The National Natural Science Foundation of China(No.61771126,61372104)the Science and Technology Project of State Grid Corporation of China(o.SGRIXTKJ[2015] 349)
文摘A weighted selection combining (WSC) scheme is proposed to improve prediction accuracy for cooperative spectrum prediction in cognitive radio networks by exploiting spatial diversity. First, a genetic algorithm-based neural network (GANN) is designed to perform spectrum prediction in consideration of both the characteristics of the primary users (PU) and the effect of fading. Then, a fusion selection method based on the iterative self-organizing data analysis (ISODATA) algorithm is designed to select the best local predictors for combination. Additionally, a reliability-based weighted combination rule is proposed to make an accurate decision based on local prediction results considering the diversity of the predictors. Finally, a Gaussian approximation approach is employed to study the performance of the proposed WSC scheme, and the expressions of the global prediction precision and throughput enhancement are derived. Simulation results reveal that the proposed WSC scheme outperforms the other cooperative spectrum prediction schemes in terms of prediction accuracy, and can achieve significant throughput gain for cognitive radio networks.
文摘利用三维荧光光谱法(3D-EEM)结合平行因子分析(PARAFAC)和自组织神经网络分析(SOM),解析了不同来源水体中不同粒径胶体的荧光特性,同时与挑峰法进行比较,以期寻找一种更好的分析天然胶体来源、粒径、荧光特性间关系的方法.基于PARAFAC模型,研究区水体中不同粒径胶体共解析出2个类腐殖质荧光峰(C1和C3)及3个类蛋白荧光峰(C2、C4和C5).其中,300 k Da^1μm分级胶体荧光强度最高,C1、C2、C3组分的荧光强度随粒径增大而增强,C4、C5组分的荧光强度随粒径增大而减弱.不同来源胶体(生活污水:进水和出水;农业污水:大盈和天恩桥;天然水体:吴淞口)的荧光强度变化大致规律为:吴淞口>进水>大盈>天恩桥>出水.SOM分析结果与PARAFAC一致,且可视化程度更高,但EEM-SOM模型存在输入变量多、兼具挑峰法缺点的问题.而PARAFAC-SOM模型不仅兼具了前两者的优点,还具有输入变量少、运行时间短、可靠性高等优点.同时,该模型还成功应用于胶体其他理化参数的分析(Parameters-SOM模型),使得前期工作结果系统性更强、更直观.因此,PARAFAC-SOM模型是相对较好的分析天然胶体来源、粒径、荧光特性间关系的方法.