期刊文献+
共找到237篇文章
< 1 2 12 >
每页显示 20 50 100
基于自组织映射神经网络的淮河流域生态系统服务簇时空变化特征 被引量:1
1
作者 常耀文 吴迪 +3 位作者 李欢 刘霞 王蕴鹏 郭家瑜 《生态学报》 CAS CSCD 北大核心 2024年第11期4544-4557,共14页
生态系统服务簇的识别是区域生态系统服务管理与优化的关键。量化了2000、2010、2020年淮河流域产水量(WY),水源涵养(WC),土壤保持(SC),生境质量(HQ),水质净化(WP),净初级生产力(NPP)和碳储量(CS)7种生态系统服务。并基于自组织映射神... 生态系统服务簇的识别是区域生态系统服务管理与优化的关键。量化了2000、2010、2020年淮河流域产水量(WY),水源涵养(WC),土壤保持(SC),生境质量(HQ),水质净化(WP),净初级生产力(NPP)和碳储量(CS)7种生态系统服务。并基于自组织映射神经网络(SOFM)识别了生态系统服务簇,探讨了生态系统服务簇的时空变化特征。结果表明:(1)2000—2020年,WP,NPP与WC呈上升趋势,WC的增幅最大;CS与HQ呈下降趋势。淮河流域各生态系统服务具有时空异质性,生态系统服务高值区多位于西南部山区与东北部丘陵山地地区。(2)识别了5个生态系统服务簇:核心生态服务簇,WP服务簇,WY服务簇,NPP服务簇与生态过渡服务簇。核心生态服务簇与生态过渡服务簇的面积总体增加,流域西南部山区与东北部丘陵山地地区生态系统服务提升,2000—2020年,WY服务簇与NPP服务簇间的转移面积较大,WY服务簇面积减少达60.09%,NPP服务簇面积显著增加,2020年占整个流域面积的57.02%。研究结果不仅有助于清晰认识淮河流域生态系统服务簇的空间分布格局及动态变化,也为探索淮河流域可持续的生态系统管理与规划决策奠定了基础。 展开更多
关键词 生态系统服务 自组织映射神经网络(SOFM) 生态系统服务簇 淮河流域 InVEST模型
下载PDF
基于混合自组织映射神经网络的云南省山洪灾害危险性区划
2
作者 高耀 陈俊旭 +4 位作者 徐佳 吕丽花 梁宗玲 赵璐沅 王子尧 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第6期1067-1077,共11页
开展云南省山洪灾害危险性区划工作,以自组织映射神经网络为基础,混合Ward、PAM、CLARA、K-means和HK-means的5种方法进行二阶聚类,应用戴维森堡丁指数(Davies-Bouldin index,DBI)、轮廓系数(silhouette coefficient,SC)、聚类模型评估... 开展云南省山洪灾害危险性区划工作,以自组织映射神经网络为基础,混合Ward、PAM、CLARA、K-means和HK-means的5种方法进行二阶聚类,应用戴维森堡丁指数(Davies-Bouldin index,DBI)、轮廓系数(silhouette coefficient,SC)、聚类模型评估指数(Calinski-Harabaz index,CH)确定最佳聚类方案,之后以变异系数和变异系数一阶拆分确定最佳区划数量.结果显示:①SOM(self organizing map)+CLARA(clustering LARge applications)方法通过聚类有效性检验效果最好,其DBI值为1.0、SC值为0.9、CH值为0.3334,基于该方法得到云南省山洪灾害危险性最佳聚类数为5类,呈现类别空间分离,灾害属性相似的特征;②通过变异系数(coefficient of variation,CV)值变化及变异系数一阶差分(first-order difference,FOD)最低取值确定云南省山洪灾害危险性最佳区划单元为16个,具有形状上与地貌单元相近、数量上与行政单元相同,内部灾害发生机理相似的特征;③通过山洪灾害点、降水量、高程地貌的可视化比较,地理探测器定量分析,表明区划结果有较高的区内一致性和区间异质性. 展开更多
关键词 区划 山洪灾害危险性 两阶段混合聚类 自组织映射神经网络 云南省
下载PDF
基于自组织映射神经网络的中药注射剂质量快速鉴别方法 被引量:14
3
作者 刘雪松 施朝晟 +1 位作者 程翼宇 瞿海斌 《分析化学》 SCIE EI CAS CSCD 北大核心 2007年第10期1483-1486,共4页
将近红外光谱分析技术与人工神经网络相结合,研究提出一种基于自组织映射神经网络的近红外光谱神经元分类模型,用于对中药注射剂产品的近红外光谱进行计算分析,可实现对注射剂质量的快速鉴别。以3个不同厂家生产的参麦注射剂为研究对象... 将近红外光谱分析技术与人工神经网络相结合,研究提出一种基于自组织映射神经网络的近红外光谱神经元分类模型,用于对中药注射剂产品的近红外光谱进行计算分析,可实现对注射剂质量的快速鉴别。以3个不同厂家生产的参麦注射剂为研究对象,考察本方法的分类能力,其分类正确率达到96.4%,优于参与比较的判别式偏最小二乘法(90.5%)、反向传播神经网络(88.1%)和支持向量机(90.5%)。 展开更多
关键词 中药分析 质量鉴别 近红外光谱分析 自组织映射神经网络 模式分类
下载PDF
三维荧光结合自组织映射神经网络考察自来水厂有机物去除效果 被引量:7
4
作者 杜尔登 郭迎庆 +2 位作者 孙悦 高乃云 王利平 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2012年第7期1846-1851,共6页
三维荧光光谱在水体监测和水处理领域日益引起广大研究者的关注。自组织映射神经网络(SOM网络)作为一种非监督、自学习的神经网络,具有自稳定性高、抗噪声能力强等特点。使用SOM网络对某自来水厂处理流程中水样的荧光光谱进行解析,可以... 三维荧光光谱在水体监测和水处理领域日益引起广大研究者的关注。自组织映射神经网络(SOM网络)作为一种非监督、自学习的神经网络,具有自稳定性高、抗噪声能力强等特点。使用SOM网络对某自来水厂处理流程中水样的荧光光谱进行解析,可以将三维荧光光谱聚类成三类,分别对应为络氨酸类蛋白有机物、色氨酸类蛋白有机物、紫外富里酸类物质。整个自来水处理工艺能够有效的去除水体中的有机物,其中络氨酸类、色氨酸类、紫外富里酸类物质的去除率分别为84.6%,79.9%,69.1%。研究结果表明,SOM网络可以作为一种有效的水体荧光光谱分析工具,有助于优化水处理工艺参数,提高水处理工艺性能、以及自来水厂的监测和管理。 展开更多
关键词 自来水处理 三维荧光(3D-EEM) 自组织映射神经网络(SOM) 有机物去除
下载PDF
基于自组织映射神经网络的市场清算电价预测 被引量:7
5
作者 曾次玲 张步涵 谢培元 《继电器》 CSCD 北大核心 2005年第13期39-43,共5页
市场清算电价预测是电力市场中交易决策的基础。人工神经网络是电价预测较为理想的方法,但依然存在一些问题,如样本训练有时需要很长时间,存在收敛问题,特别是当样本特征量不明显的时候,这种现象更为突出。针对这一问题,利用自组织映射... 市场清算电价预测是电力市场中交易决策的基础。人工神经网络是电价预测较为理想的方法,但依然存在一些问题,如样本训练有时需要很长时间,存在收敛问题,特别是当样本特征量不明显的时候,这种现象更为突出。针对这一问题,利用自组织映射的聚类特性将历史数据进行特征分类和筛选处理,处理后形成的新数据用于训练三层BP神经网络,仿真结果表明,经过这种数据处理后,网络的收敛速度得到了显著提高,且预测效果良好。 展开更多
关键词 电力市场 电价预测 BP神经网络 自组织映射神经网络
下载PDF
基于自组织映射神经网络模型的区域经济评价——以延安市为例 被引量:6
6
作者 郝俊卿 王雁林 《地域研究与开发》 CSSCI 北大核心 2005年第1期58-61,共4页
县域经济评价分类是区域经济发展研究中的重要课题。针对县域经济评价分类与其影响因素之间复杂的非线性关系,文章提出应用自组织映射神经网络模型来评价县域经济发展实力。以延安市为例,建立了实用的县域经济评价指标体系,应用建立的... 县域经济评价分类是区域经济发展研究中的重要课题。针对县域经济评价分类与其影响因素之间复杂的非线性关系,文章提出应用自组织映射神经网络模型来评价县域经济发展实力。以延安市为例,建立了实用的县域经济评价指标体系,应用建立的自组织映射神经网络模型进行了评价分类。针对分类结果,提出了延安市各县区县域经济协调发展的对策。 展开更多
关键词 区域经济 自组织映射神经网络模型 评价 延安市
下载PDF
基于自组织映射神经网络的蛋白质序列分析模型 被引量:3
7
作者 刘珑龙 马蒙 刘毛娟 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第7期130-135,共6页
为了对蛋白质序列进行更精确合理地相似性分析,本文将氨基酸的排列方式与其理化性质相结合,提出了一种基于自组织映射神经网络的聚类模型。首先,采用Wang和Wang的方法把蛋白质序列转化为一条5-字母序列,并将5个字母均匀分布在以原点为... 为了对蛋白质序列进行更精确合理地相似性分析,本文将氨基酸的排列方式与其理化性质相结合,提出了一种基于自组织映射神经网络的聚类模型。首先,采用Wang和Wang的方法把蛋白质序列转化为一条5-字母序列,并将5个字母均匀分布在以原点为圆心的单位圆周上,得到蛋白质序列的位置坐标x,y。然后,结合氨基酸的3个理化指标,进而用一个5-维向量来表示一个氨基酸。最后,运用自组织映射神经网络对不同的蛋白质向量进行聚类分析。本文最后的数值试验部分对9个不同物种的线粒体NADH脱氢酸的蛋白质序列进行了相似性分析,实验结果在一定程度上验证了模型的有效性。 展开更多
关键词 蛋白质序列 理化指标 自组织映射神经网络 相似性分析
下载PDF
基于自组织映射神经网络的吉林省春夏期降水统计模拟研究 被引量:3
8
作者 吴香华 蒙芳秀 +3 位作者 熊萍萍 于华英 燕妮 刘伟奇 《大气科学学报》 CSCD 北大核心 2018年第6期829-837,共9页
利用1997—2015年吉林省春夏期(4—7月)逐日气象站地面观测资料,以气温、气压、相对湿度、水汽压、风速为协变量,建立各站点逐日降水量的基于自组织映射神经网络(Self-Organizing Maps,SOM)的统计预测模型;分析吉林省春夏期的主要天气模... 利用1997—2015年吉林省春夏期(4—7月)逐日气象站地面观测资料,以气温、气压、相对湿度、水汽压、风速为协变量,建立各站点逐日降水量的基于自组织映射神经网络(Self-Organizing Maps,SOM)的统计预测模型;分析吉林省春夏期的主要天气模态,研究逐日降水和天气模态之间的关系,并基于此关系提出逐日降水量的蒙特卡罗模拟方法。结果表明:SOM对天气模态的分型质量较好,邻近天气模态的累积概率分布较相似,距离较远的天气模态累计概率分布差异较大。各天气模态下无降水的概率与日降水量区间宽度的相关系数为-0. 94,显著性水平小于0. 01。基于降水量累积概率分布,20种天气模态被划分成4类,并与降水易发程度和逐日降水量完全对应。在此基础上,对吉林省24个站点逐日降水量进行蒙特卡罗模拟,并进行预测性能分析。平均绝对误差(Mean Absolute Error,MAE)和均方根误差(Root Mean Square Error,RM SE)的中位数分别为3. 12 mm和6. 13 mm,SBrier和Ssig分别为0. 06和0. 51,站点的逐日降水量预测性能整体较好。MAE和RMSE分布呈现东南大西北小,去除降水自然变异差异的影响,所有站点的误差都较小; SBrier和Ssig没有明显的空间分布特征。 展开更多
关键词 春夏期降水 自组织映射神经网络 天气模态 蒙特卡罗模拟
下载PDF
自组织映射神经网络在粒子图像匹配中的研究 被引量:4
9
作者 李木国 杜海 《中国图象图形学报》 CSCD 北大核心 2008年第12期2357-2362,共6页
研究了动态粒子图像追踪过程中的误匹配问题,提出了基于自组织映射(SOM)神经网络的粒子图像匹配算法。该方法使用SOM神经网络将归一化相关算法与最近邻判断准则结合在一起。首先使用互相关算法估计初始匹配位置;然后根据不同相关度的位... 研究了动态粒子图像追踪过程中的误匹配问题,提出了基于自组织映射(SOM)神经网络的粒子图像匹配算法。该方法使用SOM神经网络将归一化相关算法与最近邻判断准则结合在一起。首先使用互相关算法估计初始匹配位置;然后根据不同相关度的位置信息构建SOM神经网络并使用近邻支持判断准则选择最佳匹配位置。经SOM神经网络改进的粒子图像匹配算法大大减少了伪矢量的数量,增强了实际的处理能力;最后,使用人工合成的粒子图以及真实流场中的粒子图像进行了算法验证及误差分析。结果表明,该算法在分析精度方面有很大的提高并且具有很强的鲁棒性。 展开更多
关键词 图像匹配 自组织映射神经网络 粒子图像测速 相关技术 鲁棒性
下载PDF
基于自组织特征映射神经网络的矢量量化 被引量:10
10
作者 陆哲明 孙圣和 《中国图象图形学报(A辑)》 CSCD 2000年第10期846-850,共5页
近年来 ,许多学者已经成功地将 Kohonen的自组织特征映射 (SOFM)神经网络应用于矢量量化 (VQ)图象压缩编码 .相对于传统的 L BG算法 ,基本的 SOFM算法的两个主要缺点是计算量大和生成的码书性能较差 ,因此为了改善码书性能 ,对基本的 S... 近年来 ,许多学者已经成功地将 Kohonen的自组织特征映射 (SOFM)神经网络应用于矢量量化 (VQ)图象压缩编码 .相对于传统的 L BG算法 ,基本的 SOFM算法的两个主要缺点是计算量大和生成的码书性能较差 ,因此为了改善码书性能 ,对基本的 SOFM算法的权值调整方法作了一些改进 ,同时为了降低计算量 ,又在决定获胜神经元的过程中 ,采用了快速搜索算法 .在将改进的算法用于矢量量化码书设计后 ,并把生成的码书用于图象的压缩编码 .测试结果表明 ,改进的算法使码书设计的计算量得到明显的降低 ,而且码书的性能得到了提高 .相对于基本算法 ,码书设计的计算时间减少了约 75 % .在图象编码中 ,不论是训练集内的图象 ,还是训练集外的图象 ,相对于基本算法 ,编码质量均提高了 0 .80 d B~ 0 .90 d B. 展开更多
关键词 矢量量化 自组织特征映射神经网络 图象压缩
下载PDF
基于自组织映射神经网络的聚类分析系统研究 被引量:3
11
作者 白瑞祥 惠鸿忠 宋辉 《化工自动化及仪表》 EI CAS 北大核心 2004年第5期29-31,共3页
 将自组织影射特征神经网络技术用于工业监控数据聚类分析,并给出聚类算法模型、算法实现步骤,采用VC++程序来实现,通过实验测试和实例数据分析,表明该聚类算法针对工业监控数据存在不确定性、有噪声及多模态性等特点,有较好的鲁棒性...  将自组织影射特征神经网络技术用于工业监控数据聚类分析,并给出聚类算法模型、算法实现步骤,采用VC++程序来实现,通过实验测试和实例数据分析,表明该聚类算法针对工业监控数据存在不确定性、有噪声及多模态性等特点,有较好的鲁棒性和适应性。 展开更多
关键词 数据挖掘 自组织特征映射神经网络(SPFM) 聚类分析 VC++6.0
下载PDF
基于自组织特征映射神经网络的边坡稳定性评价 被引量:1
12
作者 李英 郄志红 +1 位作者 吴鑫淼 赵兰敏 《水利水电技术》 CSCD 北大核心 2006年第9期20-22,共3页
将自组织特征映射神经网络(SOFM)应用于边坡稳定性分析,建立了评价边坡稳定状态的SOFM网络模型,并以工程实例对网络进行了训练和检验,研究结果表明,SOFM网络性能良好、预测精度高、简单易行,是边坡稳定性评价的一种有效方法。
关键词 自组织特征映射神经网络(SOFM) 边坡稳定 评价
下载PDF
基于改进自组织映射神经网络的信号协调控制交叉口群划分方法 被引量:3
13
作者 唐秋生 黄兰 敖谷昌 《科学技术与工程》 北大核心 2019年第20期375-382,共8页
针对以往研究在路段关联性判断和路网主要流向方面考虑不足,提出了一种基于改进自组织映射神经网络(self-orgnizing map,SOM)的信号协调控制交叉口群划分方法。首先,在离散性指标和阻滞性指标的基础上,考虑路网交通流运行的主路径特征... 针对以往研究在路段关联性判断和路网主要流向方面考虑不足,提出了一种基于改进自组织映射神经网络(self-orgnizing map,SOM)的信号协调控制交叉口群划分方法。首先,在离散性指标和阻滞性指标的基础上,考虑路网交通流运行的主路径特征引入主路径指标来表征路网交叉口之间路段关联性;其次,为弥补SOM输出结果可能大于实际需求且输出无标签的不足,把SOM中激活神经元权重作为层次聚类的输入,运用层次聚类改进SOM;并根据指标与路段关联性的关系设计关联性判断准则,据此界定交叉口之间路段关联性。最后,根据最大流最小割理论识别路网瓶颈,以瓶颈为基点向外划分交叉口群;并通过算例分析得出,该方法能够有效界定交叉口路段关联性和识别路网瓶颈,对信号协调控制配时优化具有重要基础作用。 展开更多
关键词 交通工程 网络流理论 Dinic算法 层次聚类 自组织映射神经网络 交叉口群
下载PDF
自组织特征映射神经网络的区域经济发展聚类分析 被引量:4
14
作者 周建新 罗晓玲 付传秀 《贵州大学学报(自然科学版)》 2008年第2期127-129,194,共4页
自组织特征映射(SOM)神经网络是无教师自组织、自学习网络,具有优良的数据聚类功能。基于选取的区域经济发展评价指标,对2006年我国31个省(地区)的综合经济实力进行聚类分析。结合主成分得分对聚类结果综合评价,实证效果较好。
关键词 区域经济 自组织特征映射神经网络 聚类分析
下载PDF
语音自组织特征映射神经网络矢量量化算法 被引量:1
15
作者 孙燕 姜占才 潘春花 《计算机技术与发展》 2016年第9期175-177,182,共4页
针对数字语音信号分帧提取MFCC参数,MFCC是Mel频率倒谱系数(Mel Frequency Cepstrum Coefficient,MFCC)。Mel频率是基于人耳听觉特性提出的,它与Hz频率呈非线性对应关系,利用它们之间的这种关系,计算得到Hz频谱特征。将每帧的MFCC作为... 针对数字语音信号分帧提取MFCC参数,MFCC是Mel频率倒谱系数(Mel Frequency Cepstrum Coefficient,MFCC)。Mel频率是基于人耳听觉特性提出的,它与Hz频率呈非线性对应关系,利用它们之间的这种关系,计算得到Hz频谱特征。将每帧的MFCC作为矢量进行自组织特征映射神经网络矢量量化及LBG矢量量化,通过实验对二者进行比较。仿真结果表明,自组织特征映射神经网络矢量量化算法得到的码书比LBG算法具有量化误差小、码本尺寸小的特点,进而可以节省存储空间。实验结果表明,文中方法具有一定的实用性。 展开更多
关键词 LBG算法 自组织特征映射神经网络 MFCC参数 矢量量化
下载PDF
基于改进的自组织映射神经网络的调制方式识别分类器 被引量:1
16
作者 高玉龙 张中兆 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2006年第5期143-147,共5页
为了提高调制方式识别分类器算法的正确识别概率和缩短识别时间,使其有自适应能力,利用自组织映射神经网络自组织、自适应的特点,提出采用自组织映射神经网络作为调制方式中的分类器,以自适应于信噪比的变化。对其学习规则和竞争传递函... 为了提高调制方式识别分类器算法的正确识别概率和缩短识别时间,使其有自适应能力,利用自组织映射神经网络自组织、自适应的特点,提出采用自组织映射神经网络作为调制方式中的分类器,以自适应于信噪比的变化。对其学习规则和竞争传递函数进行改进,使每次获胜的输出神经元为2个。这样能减少输出神经元个数,加快神经网络的收敛速率,以较短的时间识别接收信号的调制方式。仿真结果表明改进的自组织映射神经网络的识别概率高于其它的神经网络。并且由于其结构简单,便于工程实现。 展开更多
关键词 自组织映射神经网络 调制方式识别 学习规则 神经元节点 竞争传递函数
下载PDF
基于自组织特征映射神经网络的高压断路器故障诊断 被引量:8
17
作者 张好勇 张东亮 +1 位作者 高树军 张华 《电气应用》 2016年第23期21-24,共4页
高压断路器在电力系统中起到了控制、保护、配电和监视等作用,是重要的电力设备,其运行可靠性对电力系统安全、稳定运行具有重要意义。在建立高压断路器故障诊断模型及其运行状态特征参量选取的基础上,利用自组织特征映射(Self-Organizi... 高压断路器在电力系统中起到了控制、保护、配电和监视等作用,是重要的电力设备,其运行可靠性对电力系统安全、稳定运行具有重要意义。在建立高压断路器故障诊断模型及其运行状态特征参量选取的基础上,利用自组织特征映射(Self-Organizing feature Map,SOM)神经网络在模式聚类中的优越性,实现高压断路器的故障诊断。 展开更多
关键词 高压断路器 自组织特征映射神经网络 特征参量 故障诊断
下载PDF
基于自组织特征映射神经网络的金银花分类研究 被引量:5
18
作者 申明金 《化学分析计量》 CAS 2013年第2期35-37,共3页
自组织特征映射神经网络(SOM)以无监督方式进行网络训练,具有自组织功能。网络通过自身训练,自动对输入模式进行分类。中药药用价值与其所含微量元素有直接的关系,药材分类是中药质量控制的重要方法。将金银花中微量元素含量作为网络输... 自组织特征映射神经网络(SOM)以无监督方式进行网络训练,具有自组织功能。网络通过自身训练,自动对输入模式进行分类。中药药用价值与其所含微量元素有直接的关系,药材分类是中药质量控制的重要方法。将金银花中微量元素含量作为网络输入,利用自组织特征映射神经网络对不同产地金银花进行分类。结果表明分类效果较好,符合生产实际。 展开更多
关键词 自组织特征映射神经网络 金银花 分类
下载PDF
基于自组织特征映射神经网络的数字模式识别 被引量:3
19
作者 许新征 曾文华 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第3期333-336,共4页
在分析自组织特征映射(SOFM)神经网络基本学习算法的基础上,从提高算法收敛速度和性能出发,提出了一种改进算法:随机选择样本输入次序;根据实际应用并结合专家经验确定初始连接权值;采用高斯函数作为拓扑邻域函数;将算法分成排序和收敛... 在分析自组织特征映射(SOFM)神经网络基本学习算法的基础上,从提高算法收敛速度和性能出发,提出了一种改进算法:随机选择样本输入次序;根据实际应用并结合专家经验确定初始连接权值;采用高斯函数作为拓扑邻域函数;将算法分成排序和收敛两个阶段,并分别采用不同的学习率和邻域函数.采用改进后的SOFM算法对输入样本进行自组织聚类,再利用学习矢量量化(LVQ)算法解决样本分类中的交迭问题,提高了分类精度.仿真实验结果表明,该网络能够识别常用的数字(0~9)和英文字母,特别是在有噪声污染的情况下,可以获得较好的效果. 展开更多
关键词 自组织特征映射神经网络 数字模式识别 SOFM算法 学习矢量量化 自组织聚类 随机选择 改进算法 收敛速度 学习算法 连接权值 经验确定 高斯函数 样本分类 噪声污染 英文字母 仿真实验 分类精度 学习率 再利用 邻域
下载PDF
改进自组织映射神经网络在指纹识别中的应用
20
作者 王海华 赵楠楠 邹凌 《计算机工程与科学》 CSCD 北大核心 2009年第9期50-52,共3页
改进自组织映射神经网络方法是将常规自组织映射神经网络方法结合确定性水平,对网络的输入矢量进行预处理。通过实验比较了这种改进的自组织映射神经网络识别方法与常规的自组织映射神经网络识别方法的识别效果,在识别性能上有了很大的... 改进自组织映射神经网络方法是将常规自组织映射神经网络方法结合确定性水平,对网络的输入矢量进行预处理。通过实验比较了这种改进的自组织映射神经网络识别方法与常规的自组织映射神经网络识别方法的识别效果,在识别性能上有了很大的提高。 展开更多
关键词 指纹识别 中心点检测 指纹特征矢量 自组织映射神经网络
下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部