Nanoparticles with competitive interactions in solution can aggregate into complex structures. In this work, the synergistic self-assembles of binary particles with electrostatic and van der Waals interactions are stu...Nanoparticles with competitive interactions in solution can aggregate into complex structures. In this work, the synergistic self-assembles of binary particles with electrostatic and van der Waals interactions are studied with the particle Langevin dynamics simulation using a simple coarse-grained particle model. Various aggregations such as spherical, stacking-disk and tube structures are observed by varying the particles size and the interaction strength. The aggregation structures are explained with the packing theories of amphiphilic molecules in solution and dibolck copolymers in bulk. When the opposite ions are introduced into solution, the distribution of structures in the phase diagram appears an obvious offset. The simulation result is helpful to deeply understand the formation mechanism of complex nanostructures of multicomponent particles in solution.展开更多
Amphiphilic lipid molecules can form various micelles depending on not only their molecular composition but also their self-assembly pathway. In this work, coarse-grained molecular dynamics simulations have been appli...Amphiphilic lipid molecules can form various micelles depending on not only their molecular composition but also their self-assembly pathway. In this work, coarse-grained molecular dynamics simulations have been applied to study the micellization behaviors of mixed dipalmitoylphosphatidylcholine (DPPC)/hexadecylphosphocholine (HPC) droplets. By vary- ing DPPC/HPC composition and the size of lipid droplets, various micelles such as spherical and nonspherical (oblate or prolate) vesicles, disk-like micelles, double or single ring-like and worm-like micelles were observed. It is found that the lipid droplet as an initial state favors forming vesicles and ring-like micelles due to in situ micellization. Our simulation results demonstrate that using special initial conditions combined with various molecular compositions is an effective way to tune lipid micellar structure.展开更多
基金V. ACKNOWLEDGMENTS The computer simulation is performed on the High Performance Computing Center of Tianjin University,China. This work was supported by the National Natural Science Foundation of China (No.21274107 and No.91127046). We thank Prof. Bin Zhang, Rui Xu, Bo Du, and Dr. Zi-lu Wang in Tianjin University for helpful discussions.
文摘Nanoparticles with competitive interactions in solution can aggregate into complex structures. In this work, the synergistic self-assembles of binary particles with electrostatic and van der Waals interactions are studied with the particle Langevin dynamics simulation using a simple coarse-grained particle model. Various aggregations such as spherical, stacking-disk and tube structures are observed by varying the particles size and the interaction strength. The aggregation structures are explained with the packing theories of amphiphilic molecules in solution and dibolck copolymers in bulk. When the opposite ions are introduced into solution, the distribution of structures in the phase diagram appears an obvious offset. The simulation result is helpful to deeply understand the formation mechanism of complex nanostructures of multicomponent particles in solution.
基金This work was supported by the National Natural Science Foundation of China (No.20974078 and No.91127046), Computation was carried out in High Performance Computing Center of Tianjin University.
文摘Amphiphilic lipid molecules can form various micelles depending on not only their molecular composition but also their self-assembly pathway. In this work, coarse-grained molecular dynamics simulations have been applied to study the micellization behaviors of mixed dipalmitoylphosphatidylcholine (DPPC)/hexadecylphosphocholine (HPC) droplets. By vary- ing DPPC/HPC composition and the size of lipid droplets, various micelles such as spherical and nonspherical (oblate or prolate) vesicles, disk-like micelles, double or single ring-like and worm-like micelles were observed. It is found that the lipid droplet as an initial state favors forming vesicles and ring-like micelles due to in situ micellization. Our simulation results demonstrate that using special initial conditions combined with various molecular compositions is an effective way to tune lipid micellar structure.