空调热交换器性能异常检测技术是快速判断民机空调系统运行状态并合理安排维修任务的关键,传统的异常检测方法难以有效处理高维时序数据,无法实现系统早期故障预警。为此,本文提出了一种基于长短期记忆网络(LSTM,long-short term memory...空调热交换器性能异常检测技术是快速判断民机空调系统运行状态并合理安排维修任务的关键,传统的异常检测方法难以有效处理高维时序数据,无法实现系统早期故障预警。为此,本文提出了一种基于长短期记忆网络(LSTM,long-short term memory)与自编码器(AE,autoencoder)模型的无监督异常检测方法,用以识别民机空调系统异常运行状态。首先,基于民机空调系统原始传感器参数构建表征空调热交换器性能的特征监测参数;其次,构建LSTM-AE模型进行数据特征重构并计算重构误差;最后,使用孤立森林(iForest, isolation forest)进行无监督异常监测。将本文构建的无监督异常检测方法与传统方法对比,并建立模型评估指标,验证结果表明,所构建的模型方法可以对民机空调热交换器性能异常状态进行有效检测。展开更多
目的自编码器作为一种无监督的特征提取算法,可以在无标签的条件下学习到样本的高阶、稠密特征。然而当训练集含噪声或异常时,会迫使自编码器学习这些异常样本的特征,导致性能下降。同时,自编码器应用于高光谱图像处理时,往往会忽略掉...目的自编码器作为一种无监督的特征提取算法,可以在无标签的条件下学习到样本的高阶、稠密特征。然而当训练集含噪声或异常时,会迫使自编码器学习这些异常样本的特征,导致性能下降。同时,自编码器应用于高光谱图像处理时,往往会忽略掉空域信息,进一步限制了自编码器的探测性能。针对上述问题,本文提出一种基于空域协同自编码器的高光谱异常检测算法。方法利用块图模型优良的背景抑制能力从空域角度筛选用于自编码器训练的背景样本集。自编码器采用经预筛选的训练样本集进行网络参数更新,在提升对背景样本表达能力的同时避免异常样本对探测性能的影响。为进一步将空域信息融入探测结果,利用块图模型得到的异常响应构建权重,起到突出目标并抑制背景的作用。结果实验在3组不同尺寸的高光谱数据集上与5种代表性的高光谱异常检测算法进行比较。本文方法在3组数据集上的AUC(area under the curve)值分别为0.9904、0.9888和0.9970,均高于其他算法。同时,对比了不同的训练集选择策略,与随机选取和使用全部样本进行对比。结果表明,本文基于空域响应的样本筛选方法相较对比方法具有较明显的优势。结论提出的基于空域协同自编码器的高光谱异常检测算法从空域角度筛选样本以提升自编码器区分异常与背景的能力,同时融合了光谱域和空域信息,进一步提升了异常检测性能。展开更多
文摘空调热交换器性能异常检测技术是快速判断民机空调系统运行状态并合理安排维修任务的关键,传统的异常检测方法难以有效处理高维时序数据,无法实现系统早期故障预警。为此,本文提出了一种基于长短期记忆网络(LSTM,long-short term memory)与自编码器(AE,autoencoder)模型的无监督异常检测方法,用以识别民机空调系统异常运行状态。首先,基于民机空调系统原始传感器参数构建表征空调热交换器性能的特征监测参数;其次,构建LSTM-AE模型进行数据特征重构并计算重构误差;最后,使用孤立森林(iForest, isolation forest)进行无监督异常监测。将本文构建的无监督异常检测方法与传统方法对比,并建立模型评估指标,验证结果表明,所构建的模型方法可以对民机空调热交换器性能异常状态进行有效检测。
文摘目的自编码器作为一种无监督的特征提取算法,可以在无标签的条件下学习到样本的高阶、稠密特征。然而当训练集含噪声或异常时,会迫使自编码器学习这些异常样本的特征,导致性能下降。同时,自编码器应用于高光谱图像处理时,往往会忽略掉空域信息,进一步限制了自编码器的探测性能。针对上述问题,本文提出一种基于空域协同自编码器的高光谱异常检测算法。方法利用块图模型优良的背景抑制能力从空域角度筛选用于自编码器训练的背景样本集。自编码器采用经预筛选的训练样本集进行网络参数更新,在提升对背景样本表达能力的同时避免异常样本对探测性能的影响。为进一步将空域信息融入探测结果,利用块图模型得到的异常响应构建权重,起到突出目标并抑制背景的作用。结果实验在3组不同尺寸的高光谱数据集上与5种代表性的高光谱异常检测算法进行比较。本文方法在3组数据集上的AUC(area under the curve)值分别为0.9904、0.9888和0.9970,均高于其他算法。同时,对比了不同的训练集选择策略,与随机选取和使用全部样本进行对比。结果表明,本文基于空域响应的样本筛选方法相较对比方法具有较明显的优势。结论提出的基于空域协同自编码器的高光谱异常检测算法从空域角度筛选样本以提升自编码器区分异常与背景的能力,同时融合了光谱域和空域信息,进一步提升了异常检测性能。