Ti O2-organic multilayered nanocomposite films were deposited on a self-assembled monolayer-coated silicon substrate based on layer-by-layer technique and chemical bath deposition method by a hydrolysis of Ti Cl4 in a...Ti O2-organic multilayered nanocomposite films were deposited on a self-assembled monolayer-coated silicon substrate based on layer-by-layer technique and chemical bath deposition method by a hydrolysis of Ti Cl4 in an acid aqueous solution. The chemical compositions, surface morphologies and mechanical properties of the films were investigated by X-ray photoelectron spectrometer(XPS), scanning electron microscopy(SEM) and nanoindentation depth-sensing technique, respectively. The results indicate that the major chemical compositions of the films are Ti and O. The principal mechanism for the nucleation and growth of the films is homogeneous nucleation, and the layer number of films has great influence on the surface morphology and roughness of the films. In addition, mechanical nanoindentation testing presents a significant increase in hardness and fracture toughness of titanium dioxide multilayered films compared with single-layer titanium dioxide thin film.展开更多
Configuration information acquisition and matching are two important steps in the self-reconfiguring process of self-reconfigurable robots. The process of configuration information acquisition was introduced, and a se...Configuration information acquisition and matching are two important steps in the self-reconfiguring process of self-reconfigurable robots. The process of configuration information acquisition was introduced, and a self-reconfiguring configuration matching strategy based on graded optimization mechanism was proposed. The first-grade optimization was to search common connection between matching scheme and goal configuration. The second-grade optimization, whose object function was constructed in terms of configuration connectivity, was to search connnon topology according to the results of the first-grade optimization. The entire process of configuration information acquisition and matching was verified by an experiment and genetic algorithm (GA). The result shows the accuracy of the configuration information acquisition and the effectiveness of the configuration matching method.展开更多
Configuration design is an essential, creative and decision-making step m parallel manipulator design process, in which modeling and assembly are iterative and trivial. Combined approach with automatic parametric mode...Configuration design is an essential, creative and decision-making step m parallel manipulator design process, in which modeling and assembly are iterative and trivial. Combined approach with automatic parametric modeling and automatic assembly is proposed for parallel manipulator configuration design. The design process and key techniques, such as configuration design, configuration verification, poses calculation of all parts in parallel manipulator, virtual assembly and etc., are discussed and demonstrated by an example. A software package is developed for parallel manipulator configuration design based on the proposed method with Visual C++ and UG/OPEN on Unigraphics.展开更多
A three degree-of-freedom (DOF) planar changeable parallel mechanism is designed by means of control of different drive parameters. This mechanism possesses the characteristics of two kinds of parallel mechanism. Base...A three degree-of-freedom (DOF) planar changeable parallel mechanism is designed by means of control of different drive parameters. This mechanism possesses the characteristics of two kinds of parallel mechanism. Based on its topologic structure, a coordinate system for position analysis is set-up and the forward kinematic solutions are analyzed. It was found that the parallel mechanism is partially decoupled. The relationship between original errors and position-stance error of moving platform is built according to the complete differential-coefficient theory. Then we present a special example with theory values and errors to evaluate the error model, and numerical error solutions are gained. The investigations concentrating on mechanism errors and actuator errors show that the mechanism errors have more influences on the position-stance of the moving platform. It is demonstrated that improving manufacturing and assembly techniques can greatly reduce the moving platform error. The small change in position-stance error in different kinematic positions proves that the error-compensation of software can improve considerably the precision of parallel mechanism.展开更多
For a self-reconfigurable robot, how to metamorphose to adapt itself to environment is a difficult problem. To solve this problem, a new relative orientation model which describes modules and their surrounding grids w...For a self-reconfigurable robot, how to metamorphose to adapt itself to environment is a difficult problem. To solve this problem, a new relative orientation model which describes modules and their surrounding grids was given, a module motion rules database which enables the robot to avoid obstacles was established, and finally a three-layer planner based on dynamic meta-modules was developed. The firstlayer planner designates the category of each module in robot by evaluation functions and picks out the modules in dynamic meta-modules. The second-layer planner plans the dynamic meta-module path according to output parameters of the first-layer planner. The third-layer planner plans the motion of the modules in dynamic meta-module using topology variation oriented methods. To validate the efficiency of the three-layer planner, two simulations were given. One is the simulation of a single dynamic meta-module, the other is the simulation of planning with an initial configuration composed of 8 modules in complicated environment. Results show that the methods can make robot with any initial configuration move through metamorphosis in complicated environment efficiently.展开更多
Over the past decade,multistable mechanical metamaterials have been widely investigated because of their novel shape reconfigurability and programmable energy landscape.The ability to reversibly reshape among diverse ...Over the past decade,multistable mechanical metamaterials have been widely investigated because of their novel shape reconfigurability and programmable energy landscape.The ability to reversibly reshape among diverse stable states with different energy levels represents the most important feature of the multistable mechanical metamaterials.We summarize main design strategies of multistable mechanical metamaterials,including those based on self-assembly scheme,snap-through instability,structured mechanism and geometrical frustration,with a focus on the number and controllability of accessible stable states.Then we concentrate on unusual mechanical properties of these multistable mechanical metamaterials,and present their applications in a wide range of areas,including tunable electromagnetic devices,actuators,robotics,and mechanical logic gates.Finally,we discuss remaining challenges and open opportunities of designs and applications of multistable mechanical metamaterials.展开更多
XY table automated assembly machines ensure time saving and quality improving in the electronics industry. Recently, due to the need of higher operation speeds and lighter machines in PCB (Printed Circuit Board) ass...XY table automated assembly machines ensure time saving and quality improving in the electronics industry. Recently, due to the need of higher operation speeds and lighter machines in PCB (Printed Circuit Board) assembly, a challenging problem has arisen which is the table positioning vibration. The high speed with the machine flexibility, make the positioning vibration inevitable although the inner control. The positioning vibration is to be reduced otherwise the machine becomes useless. Firstly, the machine is modeled, the positioning vibration is formulated, and then analyzed. Secondly, using the analysis, three direct control methods are identified to decrease the positioning vibration, they are based on the kinematics, dynamics, and operation of the machine. Thirdly, the methods are examined numerically to evaluate their efficiency. Lastly, the identified methods are discussed to conclude on their application. The results are a real contribution in the vibration control of XY table automated assembly machines, which is classified as industrial knowhow.展开更多
A Network Garment Style Design System (NGSDS) is proposed to enable the remote style structure drawing design of garment. After the development of the system structure based on network that consists of client end and ...A Network Garment Style Design System (NGSDS) is proposed to enable the remote style structure drawing design of garment. After the development of the system structure based on network that consists of client end and server end at two remote places, a multi-layer part database based on Oracle platform is presented to store information of different parts of garment style. With the acquirement of remote design data at server end using Http technology, the style design is ultimately implemented at the client end using Auto-connecting algorithms. One empirical example is given to show the implementation of the NGSDS.展开更多
This paper studied the impact resistance of 3D integrated cellular woven composite panel under persudo-static impact, comprised the test result with property of typical 3D woven composites, analyzed some parameters th...This paper studied the impact resistance of 3D integrated cellular woven composite panel under persudo-static impact, comprised the test result with property of typical 3D woven composites, analyzed some parameters that maybe affect composites' impact resistance and at last used SEM to observe the damage process and mechanism of samples. The result shows that the impact resistance of 3D integrated cellular woven composites is much better than the performance of typical 3D woven composites; it is an active method to improve the impact resistance of composites that developing preform with cellular on the basis of typical 3D woven structure; for different 3D integrated cellular woven structure, the value of absorbed-energy is increasing with the hollow percentage; tiny deformatlen will not emerge on samples until the acting force gets to 85% of the maximum; similar with typical 3D woven composites, the delaminated phenomenon of 3D integrated cellular woven composites is also unapparent during impact process.展开更多
The literature on disasters mainly focuses on natural disasters and looks at their coverage by the media. The paper argues that armed conflicts are also disasters and that Western relief agencies intervening in natura...The literature on disasters mainly focuses on natural disasters and looks at their coverage by the media. The paper argues that armed conflicts are also disasters and that Western relief agencies intervening in natural disasters and conflict are also proactive communicators. Taking a different approach from much of the available research, it explores agencies' communication work in these two types of crises and analyses the differences, challenges and dilemmas that they face in communicating their humanitarianism. It outlines the distinguished inherent characteristics of natural disasters and conflicts, and examines their impact on the understanding of the crises, the perception of affected populations, and the implementation of agencies' actions. It also investigates how, in turn, all these features influence agencies' communication practices that in natural disasters emergencies and conflict-related crises perform a different role and show different parameters. In this sense, the paper distinguishes between "humanitarian communication" to refer to the former, and "humanitarian advocacy" to refer to the latter. The paper briefly explores the operational challenges engendered by the contested interpretations of humanitarian advocacy, shows that the use of the parameters of humanitarian communication in conflict-related crises to overcome these problems caused additional concern, and presents two forms of humanitarian advocacy engendering less challenges and dilemmas.展开更多
This paper proposes an adaptively secure solution to certificateless distributed key encapsulation mechanism from pairings by using Canetti's adaptive secure key generation scheme based on discrete logarithm. The pro...This paper proposes an adaptively secure solution to certificateless distributed key encapsulation mechanism from pairings by using Canetti's adaptive secure key generation scheme based on discrete logarithm. The proposed scheme can withstand adaptive attackers that can choose players for corruption at any time during the run of the protocol, and this kind of attack is powerful and realistic. In contrast, all previously presented threshold certificateless public key cryptosystems are proven secure against the more idealized static adversaries only. They choose and fix the subset of target players before running the protocol. We also prove security of this scheme in the random oracle model.展开更多
Science of Complexity is a newly emerging branch of natural science. Althoughwe still haven't a precise definition, there are some principles for justifying whether a systemis a complex system. The purpose of this...Science of Complexity is a newly emerging branch of natural science. Althoughwe still haven't a precise definition, there are some principles for justifying whether a systemis a complex system. The purpose of this article is to reveal some of such principles. Onthe basis of them, the concept of a system with complexity is proposed. They may helpus to distinguish a real complex system from complicated objects in common sense. Thenwe propose some fundamental problems faced by the study of systems with complexity.展开更多
Volatile organic solvents were considered to have little influence on the synthesis of mesostructured materials through evaporation-induced self-assembly(EISA),because upon evaporation they leave the sol and hence do ...Volatile organic solvents were considered to have little influence on the synthesis of mesostructured materials through evaporation-induced self-assembly(EISA),because upon evaporation they leave the sol and hence do not interfere with the self-assembly process.We show here that the choice of solvent is crucial in the synthesis of thin films of phenylene-bridged periodic mesoporous organosilica(benzene PMO).Methanol is found to be a better solvent for the synthesis of thin films,whereas ethanol favors the formation of(HO)3Si-C6H4-Si(OH)3 crystals,the identity and structure of which is established by X-ray diffraction.A ternary reactant composition diagram is designed to visualize the relationship among multiple synthesis experiments and to guide the interpretation of experimental results and optimization of the quality of the periodic mesoporous organosilica film.Our study highlights the importance of solvent choice,a factor often neglected in EISA.We expect it to inspire researchers to explore the effect of solvent in designing the synthesis of mesoporous materials.展开更多
Graphene aerogels are desirable for energy storage and conversion, as catalysis supports, and as adsorbents for environmental remediation. To produce graphene aerogels with low density, while maintaining high electric...Graphene aerogels are desirable for energy storage and conversion, as catalysis supports, and as adsorbents for environmental remediation. To produce graphene aerogels with low density, while maintaining high electrical conductivity and strong mechanic performance, we synthesized graphene aerogels by the magnesiothermic reduction of a freeze-dried graphene oxide (GO) self-assembly and subsequent etching of the formed MgO in acid solution. The reduced graphene oxide (rGO) aerogel samples exhibited densities as low as 1.1 mg·cm^-3. The rGO aerogel was very resilient, exhibiting full recoveryeven after being compressed by strains of up to 80%; its elastic modulus (E) scaled with density (p) as E-p^2. The rGO aerogels also exhibited high conductivities (e.g., 27.7 S·m^-1 at 3.6 mg·cm^-3) and outperformed many rGO aerogels fabricated by other reduction processes. Such outstanding properties were ascribed to the microstructures inherited from the freeze-dried GO self-assembly and the magnesiothermic reduction process.展开更多
Future worksites will be occupied by different level of automation work machines. How these machines are working individually and how a fleet of these machines cooperates will be in focus of research and development w...Future worksites will be occupied by different level of automation work machines. How these machines are working individually and how a fleet of these machines cooperates will be in focus of research and development work in the future. In this paper the studied off-road vehicle is a wheel loader. It can be controlled manually, remotely or autonomously. The control strategy of autonomous wheel loader is consisting of, e.g., static and dynamic mapping, path planning, obstacle observation and avoidance. In the autonomous machines and also in machines where operator assistance system is active the situational awareness is the key research field. Power management in hydraulic work machines are still active fields of research. Multiple architectures and configurations have been suggested concerning this area. In addition, implemented solutions that consider an entire machine are rarely presented. This paper introduces the research work of the control systems which are minimising the fuel consumption.展开更多
Understanding the evolution process and formation mechanism of nanoscale structures is crucial to controllable synthesis of inorganic nanomaterials with well-defined geometries and unique functionalities. In addition ...Understanding the evolution process and formation mechanism of nanoscale structures is crucial to controllable synthesis of inorganic nanomaterials with well-defined geometries and unique functionalities. In addition to the conventional Ostwald ripening process, oriented aggregation has been recently found to be prevalent in nanocrystal growth. In this new mechanism, primary small nanocrystals firstly spontaneously aggregate in the manner of oriented attachment, and then the large crystalline materials are formed via the process of interparticle recrystallization. Furthermore, controllable fabrication of the ordered nanocrystal solid materials that has shown specific collective properties will promote the application of inorganic nanocrystal in devices. Therefore, investigation of the mechanism of oriented aggregation is essential to controllable synthesis of nanocrystals and ordered nanocrystal solid materials. In this review, we summarize recent advances in the preparation of nanocrystal materials, which are mostly focused on our work about the role of self-assembly in construction of inorganic nanostructural materials.展开更多
This paper presents a self-assembly control strategy for the swarm modular robots. Simulated and physical experiments are conducted based on the Sambot platform, which is a novel self-assembly modular robot having the...This paper presents a self-assembly control strategy for the swarm modular robots. Simulated and physical experiments are conducted based on the Sambot platform, which is a novel self-assembly modular robot having the characteristics of both the chain-type and the mobile self-reconfigurable robots. Multiple Sambots can autonomously move and connect with one another through self-assembly to form robotic organisms. The configuration connection state table is used to describe the configuration of the robotic structure. A directional self-assembly control model is proposed to perform the self-assembly experiments. The self-assembly process begins with one Sambot as the seed, and then the Docking Sambots use a behavior-based controller to achieve connection with the seed Sambot. The controller is independent of the target configuration. The seed and connected Sambots execute a configuration comparison algorithm to control the growth of the robotic structure. Furthermore, the simul- taneous self-assembly of multiple Sambots is discussed. For multiple configurations, self-assembly experiments are conducted in simulation platform and physical platform of Sambot. The experimental results verify the effectiveness and scalability of the self-assembly algorithms.展开更多
We are all familiar with DNA as the substance that encodes the genomes of all living things.In addition to genetic function,DNA is one of the smartest building blocks for innovative nanostructures.DNA walker is a kind...We are all familiar with DNA as the substance that encodes the genomes of all living things.In addition to genetic function,DNA is one of the smartest building blocks for innovative nanostructures.DNA walker is a kind of self-assembled molecular machine that mimics the movement of protein motors in living systems.Usually,DNA walker consists of three parts:a single stranded DNA track,展开更多
基金Projects(51204036,51234009)supported by the National Natural Science Foundation of ChinaProject(2014CB643405)supported by the National Basic Research Program of China
文摘Ti O2-organic multilayered nanocomposite films were deposited on a self-assembled monolayer-coated silicon substrate based on layer-by-layer technique and chemical bath deposition method by a hydrolysis of Ti Cl4 in an acid aqueous solution. The chemical compositions, surface morphologies and mechanical properties of the films were investigated by X-ray photoelectron spectrometer(XPS), scanning electron microscopy(SEM) and nanoindentation depth-sensing technique, respectively. The results indicate that the major chemical compositions of the films are Ti and O. The principal mechanism for the nucleation and growth of the films is homogeneous nucleation, and the layer number of films has great influence on the surface morphology and roughness of the films. In addition, mechanical nanoindentation testing presents a significant increase in hardness and fracture toughness of titanium dioxide multilayered films compared with single-layer titanium dioxide thin film.
基金the National High Technology Research and Development Programme of China(No.2006AA04Z220)National Natural Science Foundation of China(No.60705027)Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT)(No.IRT0423)
文摘Configuration information acquisition and matching are two important steps in the self-reconfiguring process of self-reconfigurable robots. The process of configuration information acquisition was introduced, and a self-reconfiguring configuration matching strategy based on graded optimization mechanism was proposed. The first-grade optimization was to search common connection between matching scheme and goal configuration. The second-grade optimization, whose object function was constructed in terms of configuration connectivity, was to search connnon topology according to the results of the first-grade optimization. The entire process of configuration information acquisition and matching was verified by an experiment and genetic algorithm (GA). The result shows the accuracy of the configuration information acquisition and the effectiveness of the configuration matching method.
文摘Configuration design is an essential, creative and decision-making step m parallel manipulator design process, in which modeling and assembly are iterative and trivial. Combined approach with automatic parametric modeling and automatic assembly is proposed for parallel manipulator configuration design. The design process and key techniques, such as configuration design, configuration verification, poses calculation of all parts in parallel manipulator, virtual assembly and etc., are discussed and demonstrated by an example. A software package is developed for parallel manipulator configuration design based on the proposed method with Visual C++ and UG/OPEN on Unigraphics.
基金Preject 50225519 supported by the National Outstanding Youth Science Foundation of China
文摘A three degree-of-freedom (DOF) planar changeable parallel mechanism is designed by means of control of different drive parameters. This mechanism possesses the characteristics of two kinds of parallel mechanism. Based on its topologic structure, a coordinate system for position analysis is set-up and the forward kinematic solutions are analyzed. It was found that the parallel mechanism is partially decoupled. The relationship between original errors and position-stance error of moving platform is built according to the complete differential-coefficient theory. Then we present a special example with theory values and errors to evaluate the error model, and numerical error solutions are gained. The investigations concentrating on mechanism errors and actuator errors show that the mechanism errors have more influences on the position-stance of the moving platform. It is demonstrated that improving manufacturing and assembly techniques can greatly reduce the moving platform error. The small change in position-stance error in different kinematic positions proves that the error-compensation of software can improve considerably the precision of parallel mechanism.
基金the National High Technology Research and Development Program of China(No.2006AA04Z220)the National Nature Science Foundation of China(No.60705027)+1 种基金Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT)(No.IRT0423)Heilongjiang Postdoctoral Foundation of China(No.LRB-KY 02029)
文摘For a self-reconfigurable robot, how to metamorphose to adapt itself to environment is a difficult problem. To solve this problem, a new relative orientation model which describes modules and their surrounding grids was given, a module motion rules database which enables the robot to avoid obstacles was established, and finally a three-layer planner based on dynamic meta-modules was developed. The firstlayer planner designates the category of each module in robot by evaluation functions and picks out the modules in dynamic meta-modules. The second-layer planner plans the dynamic meta-module path according to output parameters of the first-layer planner. The third-layer planner plans the motion of the modules in dynamic meta-module using topology variation oriented methods. To validate the efficiency of the three-layer planner, two simulations were given. One is the simulation of a single dynamic meta-module, the other is the simulation of planning with an initial configuration composed of 8 modules in complicated environment. Results show that the methods can make robot with any initial configuration move through metamorphosis in complicated environment efficiently.
基金supported by the National Natural Science Foundation of China(No.11722217)the Tsinghua University,China Initiative Scientific Research Program(No.2019Z08QCX10)the Institute for Guo Qiang,Tsinghua University,China(No.2019GQG1012)。
文摘Over the past decade,multistable mechanical metamaterials have been widely investigated because of their novel shape reconfigurability and programmable energy landscape.The ability to reversibly reshape among diverse stable states with different energy levels represents the most important feature of the multistable mechanical metamaterials.We summarize main design strategies of multistable mechanical metamaterials,including those based on self-assembly scheme,snap-through instability,structured mechanism and geometrical frustration,with a focus on the number and controllability of accessible stable states.Then we concentrate on unusual mechanical properties of these multistable mechanical metamaterials,and present their applications in a wide range of areas,including tunable electromagnetic devices,actuators,robotics,and mechanical logic gates.Finally,we discuss remaining challenges and open opportunities of designs and applications of multistable mechanical metamaterials.
文摘XY table automated assembly machines ensure time saving and quality improving in the electronics industry. Recently, due to the need of higher operation speeds and lighter machines in PCB (Printed Circuit Board) assembly, a challenging problem has arisen which is the table positioning vibration. The high speed with the machine flexibility, make the positioning vibration inevitable although the inner control. The positioning vibration is to be reduced otherwise the machine becomes useless. Firstly, the machine is modeled, the positioning vibration is formulated, and then analyzed. Secondly, using the analysis, three direct control methods are identified to decrease the positioning vibration, they are based on the kinematics, dynamics, and operation of the machine. Thirdly, the methods are examined numerically to evaluate their efficiency. Lastly, the identified methods are discussed to conclude on their application. The results are a real contribution in the vibration control of XY table automated assembly machines, which is classified as industrial knowhow.
文摘A Network Garment Style Design System (NGSDS) is proposed to enable the remote style structure drawing design of garment. After the development of the system structure based on network that consists of client end and server end at two remote places, a multi-layer part database based on Oracle platform is presented to store information of different parts of garment style. With the acquirement of remote design data at server end using Http technology, the style design is ultimately implemented at the client end using Auto-connecting algorithms. One empirical example is given to show the implementation of the NGSDS.
基金Supported by Zhejiang Science and Technology Research Project(No.2005C21073)
文摘This paper studied the impact resistance of 3D integrated cellular woven composite panel under persudo-static impact, comprised the test result with property of typical 3D woven composites, analyzed some parameters that maybe affect composites' impact resistance and at last used SEM to observe the damage process and mechanism of samples. The result shows that the impact resistance of 3D integrated cellular woven composites is much better than the performance of typical 3D woven composites; it is an active method to improve the impact resistance of composites that developing preform with cellular on the basis of typical 3D woven structure; for different 3D integrated cellular woven structure, the value of absorbed-energy is increasing with the hollow percentage; tiny deformatlen will not emerge on samples until the acting force gets to 85% of the maximum; similar with typical 3D woven composites, the delaminated phenomenon of 3D integrated cellular woven composites is also unapparent during impact process.
文摘The literature on disasters mainly focuses on natural disasters and looks at their coverage by the media. The paper argues that armed conflicts are also disasters and that Western relief agencies intervening in natural disasters and conflict are also proactive communicators. Taking a different approach from much of the available research, it explores agencies' communication work in these two types of crises and analyses the differences, challenges and dilemmas that they face in communicating their humanitarianism. It outlines the distinguished inherent characteristics of natural disasters and conflicts, and examines their impact on the understanding of the crises, the perception of affected populations, and the implementation of agencies' actions. It also investigates how, in turn, all these features influence agencies' communication practices that in natural disasters emergencies and conflict-related crises perform a different role and show different parameters. In this sense, the paper distinguishes between "humanitarian communication" to refer to the former, and "humanitarian advocacy" to refer to the latter. The paper briefly explores the operational challenges engendered by the contested interpretations of humanitarian advocacy, shows that the use of the parameters of humanitarian communication in conflict-related crises to overcome these problems caused additional concern, and presents two forms of humanitarian advocacy engendering less challenges and dilemmas.
基金the National Basic Research Program(973)of China(No.2007CB311201)the National High Technology Research and Development Program(863) of China(Nos.2006AA01Z422,2007AA01Z456)
文摘This paper proposes an adaptively secure solution to certificateless distributed key encapsulation mechanism from pairings by using Canetti's adaptive secure key generation scheme based on discrete logarithm. The proposed scheme can withstand adaptive attackers that can choose players for corruption at any time during the run of the protocol, and this kind of attack is powerful and realistic. In contrast, all previously presented threshold certificateless public key cryptosystems are proven secure against the more idealized static adversaries only. They choose and fix the subset of target players before running the protocol. We also prove security of this scheme in the random oracle model.
基金This research is partly by the National Natural Science Foundation of China(G1998020308)
文摘Science of Complexity is a newly emerging branch of natural science. Althoughwe still haven't a precise definition, there are some principles for justifying whether a systemis a complex system. The purpose of this article is to reveal some of such principles. Onthe basis of them, the concept of a system with complexity is proposed. They may helpus to distinguish a real complex system from complicated objects in common sense. Thenwe propose some fundamental problems faced by the study of systems with complexity.
基金the Natural Sciences and Engineering Council (NSERC) of Canada for strong and sustained support of his research
文摘Volatile organic solvents were considered to have little influence on the synthesis of mesostructured materials through evaporation-induced self-assembly(EISA),because upon evaporation they leave the sol and hence do not interfere with the self-assembly process.We show here that the choice of solvent is crucial in the synthesis of thin films of phenylene-bridged periodic mesoporous organosilica(benzene PMO).Methanol is found to be a better solvent for the synthesis of thin films,whereas ethanol favors the formation of(HO)3Si-C6H4-Si(OH)3 crystals,the identity and structure of which is established by X-ray diffraction.A ternary reactant composition diagram is designed to visualize the relationship among multiple synthesis experiments and to guide the interpretation of experimental results and optimization of the quality of the periodic mesoporous organosilica film.Our study highlights the importance of solvent choice,a factor often neglected in EISA.We expect it to inspire researchers to explore the effect of solvent in designing the synthesis of mesoporous materials.
基金This work was supported Foundation for Returned Education of China, Key by the Scientific Research Scholars, the Ministry of Basic Research Projects of Science and Technology Commission of Shanghai (No.11JC1412900), and the National Science Foundation of China program (Nos. 21271140, 51472182).
文摘Graphene aerogels are desirable for energy storage and conversion, as catalysis supports, and as adsorbents for environmental remediation. To produce graphene aerogels with low density, while maintaining high electrical conductivity and strong mechanic performance, we synthesized graphene aerogels by the magnesiothermic reduction of a freeze-dried graphene oxide (GO) self-assembly and subsequent etching of the formed MgO in acid solution. The reduced graphene oxide (rGO) aerogel samples exhibited densities as low as 1.1 mg·cm^-3. The rGO aerogel was very resilient, exhibiting full recoveryeven after being compressed by strains of up to 80%; its elastic modulus (E) scaled with density (p) as E-p^2. The rGO aerogels also exhibited high conductivities (e.g., 27.7 S·m^-1 at 3.6 mg·cm^-3) and outperformed many rGO aerogels fabricated by other reduction processes. Such outstanding properties were ascribed to the microstructures inherited from the freeze-dried GO self-assembly and the magnesiothermic reduction process.
文摘Future worksites will be occupied by different level of automation work machines. How these machines are working individually and how a fleet of these machines cooperates will be in focus of research and development work in the future. In this paper the studied off-road vehicle is a wheel loader. It can be controlled manually, remotely or autonomously. The control strategy of autonomous wheel loader is consisting of, e.g., static and dynamic mapping, path planning, obstacle observation and avoidance. In the autonomous machines and also in machines where operator assistance system is active the situational awareness is the key research field. Power management in hydraulic work machines are still active fields of research. Multiple architectures and configurations have been suggested concerning this area. In addition, implemented solutions that consider an entire machine are rarely presented. This paper introduces the research work of the control systems which are minimising the fuel consumption.
基金supported by the National Natural Science Foundation for Distinguished Youth Scholars of China (21025310, Z.Y.T.)National Natural Science Foundation of China (91027011, Z.Y.T.)National Basic Research Program of China (973 Program) (2009CB930401,Z.Y.T.)
文摘Understanding the evolution process and formation mechanism of nanoscale structures is crucial to controllable synthesis of inorganic nanomaterials with well-defined geometries and unique functionalities. In addition to the conventional Ostwald ripening process, oriented aggregation has been recently found to be prevalent in nanocrystal growth. In this new mechanism, primary small nanocrystals firstly spontaneously aggregate in the manner of oriented attachment, and then the large crystalline materials are formed via the process of interparticle recrystallization. Furthermore, controllable fabrication of the ordered nanocrystal solid materials that has shown specific collective properties will promote the application of inorganic nanocrystal in devices. Therefore, investigation of the mechanism of oriented aggregation is essential to controllable synthesis of nanocrystals and ordered nanocrystal solid materials. In this review, we summarize recent advances in the preparation of nanocrystal materials, which are mostly focused on our work about the role of self-assembly in construction of inorganic nanostructural materials.
基金supported by the National High Technology Research and Development Program of China ("863" Program) (Grant Nos. 2009AA043901 and 2012AA041402)National Natural Science Foundation of China (Grant No. 61175079)+1 种基金Fundamental Research Funds for the Central Universities (Grant No. YWF-11-02-215)Beijing Technological New Star Project (Grant No. 2008A018)
文摘This paper presents a self-assembly control strategy for the swarm modular robots. Simulated and physical experiments are conducted based on the Sambot platform, which is a novel self-assembly modular robot having the characteristics of both the chain-type and the mobile self-reconfigurable robots. Multiple Sambots can autonomously move and connect with one another through self-assembly to form robotic organisms. The configuration connection state table is used to describe the configuration of the robotic structure. A directional self-assembly control model is proposed to perform the self-assembly experiments. The self-assembly process begins with one Sambot as the seed, and then the Docking Sambots use a behavior-based controller to achieve connection with the seed Sambot. The controller is independent of the target configuration. The seed and connected Sambots execute a configuration comparison algorithm to control the growth of the robotic structure. Furthermore, the simul- taneous self-assembly of multiple Sambots is discussed. For multiple configurations, self-assembly experiments are conducted in simulation platform and physical platform of Sambot. The experimental results verify the effectiveness and scalability of the self-assembly algorithms.
文摘We are all familiar with DNA as the substance that encodes the genomes of all living things.In addition to genetic function,DNA is one of the smartest building blocks for innovative nanostructures.DNA walker is a kind of self-assembled molecular machine that mimics the movement of protein motors in living systems.Usually,DNA walker consists of three parts:a single stranded DNA track,