A distributed feedback laser with a wavelength of 2.8μm was used to measure the species produced by water vapor glow discharge.Only the absorption spectra of OH radicals and transient H2O molecules were observed usin...A distributed feedback laser with a wavelength of 2.8μm was used to measure the species produced by water vapor glow discharge.Only the absorption spectra of OH radicals and transient H2O molecules were observed using concentration modulation(CM)spectroscopy.The intensities and orientations of the absorption peaks change with the demodulation phase,but the direction of one absorption peak of H2O is always opposite to the other peaks.The different spectral orientations of OH and H2O reflect the increase or the decrease of the number of particles in the energy levels.If more transient species can be detected in the discharge process,the dynamics of excitation,ionization,and decomposition of H2O can be better studied.This study shows that the demodulation phase relationship of CM spectrum can be used to study the population change of molecular energy levels.展开更多
All-optical regeneration based on self-phase modulation in microstructured fibers is studied. The effects of pulse peak power into the fiber, pulse width and filter parameters on the performance of the regenerator are...All-optical regeneration based on self-phase modulation in microstructured fibers is studied. The effects of pulse peak power into the fiber, pulse width and filter parameters on the performance of the regenerator are investigated. The effects of normal dispersion and anomalous dispersion of the microstructured fiber on optical regeneration are compared. The nu- merical results show that optical regeneration can be achieved by using microstructured fibers with normal dispersion or anomalous dispersion, but the normal dispersion decreases the oscillatory structure in the broadened spectra and obtain a better regenerator transfer function. In order to achieve optical regeneration, the input peak power into the microstructured fiber and the filter parameters need to meet certain requirements. By optimizing those parameters, a better regeneration result can be obtained.展开更多
Self-diffraction appears when the strong laser goes through two-dimensional material suspension,and this spatial self-phase modulation(SPPM)phenomenon can be used to measure nonlinear optical parameters and achieve op...Self-diffraction appears when the strong laser goes through two-dimensional material suspension,and this spatial self-phase modulation(SPPM)phenomenon can be used to measure nonlinear optical parameters and achieve optical switch.At present,the mechanism of SPPM is still ambiguous.The debate mainly focuses on whether the phenomenon is caused by the nonlinear refractive index of the two-dimensional material or the thermal effect of the laser.The lack of theory limits the dimension of the phase modulation to the radius of the diffraction ring and the vertical imbalance.Therefore,it is urgent to establish a unified and universal SSPM theoretical system of two-dimensional material.展开更多
The performances of nonlinear WDM systems with different duty cycle are compared by means of numerical simulation.The numerical results show that the optical pulse with duty cycle of 0.5 is superior to the conventiona...The performances of nonlinear WDM systems with different duty cycle are compared by means of numerical simulation.The numerical results show that the optical pulse with duty cycle of 0.5 is superior to the conventional NRZ modulation scheme.The conclusion is different from that of some references.The reason is that inter symbol interference is not included in some references.In fact,inter symbol interference plays an important role in nonlinear WDM system.Although the larger the duty cycle is ,the stronger the effect of the cross-phase modulation and self-phase modulation on nonlinear WDM is,however,the larger the duty cycle is,the stronger the inter symbol interference is.展开更多
A tunable microwave photonic bandpass filter with high mainlobe-to-sidelobe ratio (MSR) based on a phase modulator and a dispersive device is proposed. The multi-tap characteristics of the filter are realized by slici...A tunable microwave photonic bandpass filter with high mainlobe-to-sidelobe ratio (MSR) based on a phase modulator and a dispersive device is proposed. The multi-tap characteristics of the filter are realized by slicing a broadband source using a Mach-Zehnder interferometer (MZI) which results in a high MSR of 25 dB. The tunability of the filter is realized by an optical variable delay line (OVDL) in one arm of the MZI, which changes the wavelength spacing of the sliced broadband source and results in a tunable free spectrum range (FSR) of the filter. The central frequency of the bandpass filter is tunable from 10.7 GHz to 27 GHz by changing the wavelength spacing from 0.145 nm to 0.054 nm.展开更多
A location-adaptive transmission scheme for indoor visible light communication(VLC) system is proposed in this paper.In this scheme,the symbol error rate(SER) of less than 10-3 should be guaranteed.And the scheme is r...A location-adaptive transmission scheme for indoor visible light communication(VLC) system is proposed in this paper.In this scheme,the symbol error rate(SER) of less than 10-3 should be guaranteed.And the scheme is realized by the variable multilevel pulse-position modulation(MPPM),where the transmitters adaptively adjust the number of time slots n in the MPPM symbol according to the position of the receiver.The purpose of our scheme is to achieve the best data rate in the indoor different locations.The results show that the location-adaptive transmission scheme based on the variable MPPM is superior in the indoor VLC system.展开更多
A widely tunable microwave photonic notch filter with adjustable bandwidth based on multi-wavelength fiber laser is proposed and demonstrated. The multi-wavelength fiber laser generates the multi-taps of the microwave...A widely tunable microwave photonic notch filter with adjustable bandwidth based on multi-wavelength fiber laser is proposed and demonstrated. The multi-wavelength fiber laser generates the multi-taps of the microwave photonic filter (MPF). In order to obtain notch frequency response, a Fourier-domain optical processor (FD-OP) is introduced to con- trol the amplitude and phase of the optical carrier and phase modulation sidebands. By adjusting the polarization con- troller (PC), different numbers of taps are got, such as 6, 8, 10 and 121 And the wavelength-spacing of the multi-wavelength laser is 0.4 nm. The bandwidth of the notch filter is changed by adjusting the number of taps and the corresponding bandwidths are 4.41 GHz, 3.30 GHz, 2.64 GHz and 2.19 GHz, respectively. With the additional phase shift introduced by FD-OP, the notch position is continuously ttmed in the whole free spectral range (FSR) of 27.94 GHz. The center frequency of the notch filter can be continuously tuned from 13.97 GHz to 41.91 GHz.展开更多
基金the National Natural Science Foundation of China(No.61625501,No.61427816)the Open Fund of the State Key Laboratory of High Field Laser Physics(SIOM)the Open Fund of the State Key Laboratory of Precision Spectroscopy。
文摘A distributed feedback laser with a wavelength of 2.8μm was used to measure the species produced by water vapor glow discharge.Only the absorption spectra of OH radicals and transient H2O molecules were observed using concentration modulation(CM)spectroscopy.The intensities and orientations of the absorption peaks change with the demodulation phase,but the direction of one absorption peak of H2O is always opposite to the other peaks.The different spectral orientations of OH and H2O reflect the increase or the decrease of the number of particles in the energy levels.If more transient species can be detected in the discharge process,the dynamics of excitation,ionization,and decomposition of H2O can be better studied.This study shows that the demodulation phase relationship of CM spectrum can be used to study the population change of molecular energy levels.
基金the National Basic Research Program ofChina (2003CB314906), the Key grant Project of Chinese Ministryof Education (NO.104046),and the Foundation from the EducationCommission of Beijing (XK100130437).
文摘All-optical regeneration based on self-phase modulation in microstructured fibers is studied. The effects of pulse peak power into the fiber, pulse width and filter parameters on the performance of the regenerator are investigated. The effects of normal dispersion and anomalous dispersion of the microstructured fiber on optical regeneration are compared. The nu- merical results show that optical regeneration can be achieved by using microstructured fibers with normal dispersion or anomalous dispersion, but the normal dispersion decreases the oscillatory structure in the broadened spectra and obtain a better regenerator transfer function. In order to achieve optical regeneration, the input peak power into the microstructured fiber and the filter parameters need to meet certain requirements. By optimizing those parameters, a better regeneration result can be obtained.
基金Project(6187031976)supported by the National Natural Science Foundation of China
文摘Self-diffraction appears when the strong laser goes through two-dimensional material suspension,and this spatial self-phase modulation(SPPM)phenomenon can be used to measure nonlinear optical parameters and achieve optical switch.At present,the mechanism of SPPM is still ambiguous.The debate mainly focuses on whether the phenomenon is caused by the nonlinear refractive index of the two-dimensional material or the thermal effect of the laser.The lack of theory limits the dimension of the phase modulation to the radius of the diffraction ring and the vertical imbalance.Therefore,it is urgent to establish a unified and universal SSPM theoretical system of two-dimensional material.
文摘The performances of nonlinear WDM systems with different duty cycle are compared by means of numerical simulation.The numerical results show that the optical pulse with duty cycle of 0.5 is superior to the conventional NRZ modulation scheme.The conclusion is different from that of some references.The reason is that inter symbol interference is not included in some references.In fact,inter symbol interference plays an important role in nonlinear WDM system.Although the larger the duty cycle is ,the stronger the effect of the cross-phase modulation and self-phase modulation on nonlinear WDM is,however,the larger the duty cycle is,the stronger the inter symbol interference is.
基金supported by the National Natural Science Foundation of China (No.60808004)the New Century Excellent Talents in University (No.NCET-07-0611)the Tianjin Natural Science Foundation (No.08JCYBJC14500)
文摘A tunable microwave photonic bandpass filter with high mainlobe-to-sidelobe ratio (MSR) based on a phase modulator and a dispersive device is proposed. The multi-tap characteristics of the filter are realized by slicing a broadband source using a Mach-Zehnder interferometer (MZI) which results in a high MSR of 25 dB. The tunability of the filter is realized by an optical variable delay line (OVDL) in one arm of the MZI, which changes the wavelength spacing of the sliced broadband source and results in a tunable free spectrum range (FSR) of the filter. The central frequency of the bandpass filter is tunable from 10.7 GHz to 27 GHz by changing the wavelength spacing from 0.145 nm to 0.054 nm.
基金supported by the Jinlin Provincial Science&Tenchology Department of China(No.20130413052GH)
文摘A location-adaptive transmission scheme for indoor visible light communication(VLC) system is proposed in this paper.In this scheme,the symbol error rate(SER) of less than 10-3 should be guaranteed.And the scheme is realized by the variable multilevel pulse-position modulation(MPPM),where the transmitters adaptively adjust the number of time slots n in the MPPM symbol according to the position of the receiver.The purpose of our scheme is to achieve the best data rate in the indoor different locations.The results show that the location-adaptive transmission scheme based on the variable MPPM is superior in the indoor VLC system.
基金supported by the National Natural Science Foundation of China(No.11444001)the Municipal Natural Science Foundation of Tianjin in China(No.14JCYBJC16500)
文摘A widely tunable microwave photonic notch filter with adjustable bandwidth based on multi-wavelength fiber laser is proposed and demonstrated. The multi-wavelength fiber laser generates the multi-taps of the microwave photonic filter (MPF). In order to obtain notch frequency response, a Fourier-domain optical processor (FD-OP) is introduced to con- trol the amplitude and phase of the optical carrier and phase modulation sidebands. By adjusting the polarization con- troller (PC), different numbers of taps are got, such as 6, 8, 10 and 121 And the wavelength-spacing of the multi-wavelength laser is 0.4 nm. The bandwidth of the notch filter is changed by adjusting the number of taps and the corresponding bandwidths are 4.41 GHz, 3.30 GHz, 2.64 GHz and 2.19 GHz, respectively. With the additional phase shift introduced by FD-OP, the notch position is continuously ttmed in the whole free spectral range (FSR) of 27.94 GHz. The center frequency of the notch filter can be continuously tuned from 13.97 GHz to 41.91 GHz.