When a Bose-Einstein condensate is set to rotate, superfluid vortices will be formed, which finally condense into a vortex lattice as the rotation frequency further increases. We show that the dipole-dipole interactio...When a Bose-Einstein condensate is set to rotate, superfluid vortices will be formed, which finally condense into a vortex lattice as the rotation frequency further increases. We show that the dipole-dipole interactions renormalize the short-range interaction strength and result in a distinction between interactions of parallel-polarized atoms and interactions of antiparallel-polarized atoms. This effect may lead to a spontaneous breakdown of the rapidly rotating Bose condensate into a novel anti-ferromagnetic-like vortex lattice. The upward-polarized Bose condensate forms a vortex lattice, which is staggered against a downward-polarized vortex lattice. A phase diagram related to the coupling strength is obtained.展开更多
We introduce a completely different method to calculate the evolution of a spin interacting with a sufficient large spin bath,especially suitable for treating the central spin model in a quantum dot(QD).With only an a...We introduce a completely different method to calculate the evolution of a spin interacting with a sufficient large spin bath,especially suitable for treating the central spin model in a quantum dot(QD).With only an approximation on the envelope of central spin,the symmetry can be exploited to reduce a huge Hilbert space which cannot be calculated with computers to many small ones which can be solved exactly.This method can be used to calculate spin-bath evolution for a spin bath containing many(say,1000)spins,without a perturbative limit such as strong magnetic field condition,and works for long-time regime with sufficient accuracy.As the spin-bath evolution can be calculated for a wide range of time and magnetic field,an optimal dynamic of spin flip-flop can be found,and more sophisticated approaches to achieve extremely high polarization of nuclear spins in a QD could be developed.展开更多
A brief review is presented,which includes the direct current,alternate current,electrical and thermoelectrical transport as well as spin transfer effect in a variety of spin-based nanostructures such as the magnetic ...A brief review is presented,which includes the direct current,alternate current,electrical and thermoelectrical transport as well as spin transfer effect in a variety of spin-based nanostructures such as the magnetic tunnel junction(MTJ),ferromagnet(FM)-quantum dot(QD)/FM-FM,double barrier MTJ,FM-marginal Fermi liquid-FM,FM-unconventional superconductor-FM(FUSF),quantum ring and optical spin-field-effect transistor.The magnetoresistances in those structures,spin accumulation effect in FM-QD-FM and FUSF systems,spin injection and spin filter into semiconductor,spin transfer effect,photon-assisted spin transport,magnonassisted tunneling,electron-electron interaction effect on spin transport,laser-controlled spin dynamics,and thermoelectrical spin transport are discussed.展开更多
基金The project supported by National Natural Science Foundation of China under Grant No. 10574012
文摘When a Bose-Einstein condensate is set to rotate, superfluid vortices will be formed, which finally condense into a vortex lattice as the rotation frequency further increases. We show that the dipole-dipole interactions renormalize the short-range interaction strength and result in a distinction between interactions of parallel-polarized atoms and interactions of antiparallel-polarized atoms. This effect may lead to a spontaneous breakdown of the rapidly rotating Bose condensate into a novel anti-ferromagnetic-like vortex lattice. The upward-polarized Bose condensate forms a vortex lattice, which is staggered against a downward-polarized vortex lattice. A phase diagram related to the coupling strength is obtained.
基金supported by the National Basic Research Program of China(Grant Nos.2011CBA00300 and 2011CBA00301)the National Natural Science Foundation of China(Grant No.61033001)the Chinese Academy of Science
文摘We introduce a completely different method to calculate the evolution of a spin interacting with a sufficient large spin bath,especially suitable for treating the central spin model in a quantum dot(QD).With only an approximation on the envelope of central spin,the symmetry can be exploited to reduce a huge Hilbert space which cannot be calculated with computers to many small ones which can be solved exactly.This method can be used to calculate spin-bath evolution for a spin bath containing many(say,1000)spins,without a perturbative limit such as strong magnetic field condition,and works for long-time regime with sufficient accuracy.As the spin-bath evolution can be calculated for a wide range of time and magnetic field,an optimal dynamic of spin flip-flop can be found,and more sophisticated approaches to achieve extremely high polarization of nuclear spins in a QD could be developed.
基金supported in part by the National Science Fund for Distinguished Young Scholars of China(Grant No. 10625419)the National Natural Science Foundation of China(Grant Nos. 90922033 and 10934008)+1 种基金the Ministry of Science and Technology of China (Grant Nos.2012CB932900 and 2013CB933401)the Chinese Academy of Sciences,China,the DFG and the state of Saxony-Anhalt,Germany
文摘A brief review is presented,which includes the direct current,alternate current,electrical and thermoelectrical transport as well as spin transfer effect in a variety of spin-based nanostructures such as the magnetic tunnel junction(MTJ),ferromagnet(FM)-quantum dot(QD)/FM-FM,double barrier MTJ,FM-marginal Fermi liquid-FM,FM-unconventional superconductor-FM(FUSF),quantum ring and optical spin-field-effect transistor.The magnetoresistances in those structures,spin accumulation effect in FM-QD-FM and FUSF systems,spin injection and spin filter into semiconductor,spin transfer effect,photon-assisted spin transport,magnonassisted tunneling,electron-electron interaction effect on spin transport,laser-controlled spin dynamics,and thermoelectrical spin transport are discussed.