Multi-agent systems(MASs) are ubiquitous in natural and artificial systems. This paper aims to establish the finite-time adaptive consensus criterion for a class of MASs with nonlinear dynamics. Traditionally, the fin...Multi-agent systems(MASs) are ubiquitous in natural and artificial systems. This paper aims to establish the finite-time adaptive consensus criterion for a class of MASs with nonlinear dynamics. Traditionally, the finite-time consensus criterion is often established based on the prior information on Lipschitz constants and the eigenvalues of Laplacian matrix. However, it is difficult to acquire the above prior information for most real-world engineering systems. To overcome the above difficulty, this paper develops the finite-time consensus criteria for a class of MASs with nonlinear dynamics via adaptive technique. In detail, we design the finite-time distributed node-based and edge-based adaptive consensus protocols for a class of MASs with fixed and switching topologies. Numerical simulations are also given to validate the proposed finite-time adaptive consensus criterion.展开更多
In this paper,the car-following control problem of nonholonomic autonomous electric vehicles in the curved highway is studied.Owing to the fact that the nonholonomic autonomous electric vehicles have the features of s...In this paper,the car-following control problem of nonholonomic autonomous electric vehicles in the curved highway is studied.Owing to the fact that the nonholonomic autonomous electric vehicles have the features of strong coupling,parametric uncertainties,nonlinearities and external disturbances,a novel integrated adaptive car-following control system is constructed to supervise the longitudinal and lateral motions of vehicles.Firstly,an adaptive fuzzy dynamic surface car-following control strategy is presented to determine a vector of total forces and torque of autonomous electric vehicles,which can guarantee the uniform ultimate boundedness of close-loop control signals.Then,an optimal tire forces distribution law is proposed to dynamically allocate the desired coupled tire longitudinal and lateral forces in real-time.Finally,simulation results illustrate the effectiveness and robustness of the proposed car-following control approach.展开更多
基金supported by the National Basic Research Program of China("973"Project)(Grant No.2014CB845302)the National Science and Technology Major Project of China(Grant No.2014ZX10004001-014)the National Natural Science Foundation of China(Grant No.11472290)
文摘Multi-agent systems(MASs) are ubiquitous in natural and artificial systems. This paper aims to establish the finite-time adaptive consensus criterion for a class of MASs with nonlinear dynamics. Traditionally, the finite-time consensus criterion is often established based on the prior information on Lipschitz constants and the eigenvalues of Laplacian matrix. However, it is difficult to acquire the above prior information for most real-world engineering systems. To overcome the above difficulty, this paper develops the finite-time consensus criteria for a class of MASs with nonlinear dynamics via adaptive technique. In detail, we design the finite-time distributed node-based and edge-based adaptive consensus protocols for a class of MASs with fixed and switching topologies. Numerical simulations are also given to validate the proposed finite-time adaptive consensus criterion.
基金supported by the National Natural Science Foundation of China(GrantNos.U1564208&61304193)National Key R&D Program of China(Grant No.2016YFB0100900)the Natural Science Foundation of Fujian Province(Grant No.2017J01100)
文摘In this paper,the car-following control problem of nonholonomic autonomous electric vehicles in the curved highway is studied.Owing to the fact that the nonholonomic autonomous electric vehicles have the features of strong coupling,parametric uncertainties,nonlinearities and external disturbances,a novel integrated adaptive car-following control system is constructed to supervise the longitudinal and lateral motions of vehicles.Firstly,an adaptive fuzzy dynamic surface car-following control strategy is presented to determine a vector of total forces and torque of autonomous electric vehicles,which can guarantee the uniform ultimate boundedness of close-loop control signals.Then,an optimal tire forces distribution law is proposed to dynamically allocate the desired coupled tire longitudinal and lateral forces in real-time.Finally,simulation results illustrate the effectiveness and robustness of the proposed car-following control approach.