为了改善图像去噪的效果,提出一种基于分数阶积分和中值滤波的改进自适应图像去噪算法,首先利用自适应中值滤波算法(Ranked-order Based Adaptive Median Filter,RAMF)中的噪声判别条件来检测噪声点,然后利用"噪声边缘"判别...为了改善图像去噪的效果,提出一种基于分数阶积分和中值滤波的改进自适应图像去噪算法,首先利用自适应中值滤波算法(Ranked-order Based Adaptive Median Filter,RAMF)中的噪声判别条件来检测噪声点,然后利用"噪声边缘"判别函数对其中的可疑噪声点进行二次检测,同时根据图像的局部统计信息和结构特征构造自适应的分数阶阶次,最后将检测出的噪声点进行自适应的分数阶积分滤波去噪。与传统的分数阶积分去噪算法相比,该自适应算法有效地保留了被错误误去除的图像边缘点,并且实现了分数阶积分的阶次自适应化,在去除噪声的同时很好地保留了图像的边缘及纹理细节信息。展开更多
基金Supported by the Science and Technology Innovation 2030 New Generation Artificial Intelligence Major Project(2018AAA0100902)the National Key Research and Development Program of China(2019YFB1705800)the National Natural Science Foundation of China(61973270)。
文摘为了改善图像去噪的效果,提出一种基于分数阶积分和中值滤波的改进自适应图像去噪算法,首先利用自适应中值滤波算法(Ranked-order Based Adaptive Median Filter,RAMF)中的噪声判别条件来检测噪声点,然后利用"噪声边缘"判别函数对其中的可疑噪声点进行二次检测,同时根据图像的局部统计信息和结构特征构造自适应的分数阶阶次,最后将检测出的噪声点进行自适应的分数阶积分滤波去噪。与传统的分数阶积分去噪算法相比,该自适应算法有效地保留了被错误误去除的图像边缘点,并且实现了分数阶积分的阶次自适应化,在去除噪声的同时很好地保留了图像的边缘及纹理细节信息。
基金Supported by the Key Project of Universities Natural Science Research of Anhui Province (KJ2021A0638, KJ2020A0509)the National Natural Science Foundation of China (61573034, 61327807, 11705003)the National Natural Science Foundation of Anhui Province (gxbjZD2021063)。