期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
一种自适应免疫优化的无迹粒子滤波器 被引量:3
1
作者 王旭阳 王智勇 《计算机工程与应用》 CSCD 2013年第4期231-235,共5页
针对无迹粒子滤波(UPF)在较偏观测时的退化现象及重采样带来的粒子枯竭问题,提出一种自适应免疫优化的无迹粒子滤波算法(AIO-UPF)。该算法在重采样过程中,利用免疫算法在亲和度与浓度调节机制下的全局寻优能力和多样性特征,通过引入自... 针对无迹粒子滤波(UPF)在较偏观测时的退化现象及重采样带来的粒子枯竭问题,提出一种自适应免疫优化的无迹粒子滤波算法(AIO-UPF)。该算法在重采样过程中,利用免疫算法在亲和度与浓度调节机制下的全局寻优能力和多样性特征,通过引入自适应阈值因子δ的Metropolis准则,使得粒子集能够有效地分布于高似然区域,提高了粒子的多样性和有效性,从而较好地抑制了在较偏观测时的粒子退化问题。仿真结果表明,AIO-UPF的性能优于传统UPF及标准粒子滤波,在状态估计精度上比传统UPF提高了27%左右。 展开更多
关键词 无迹粒子滤波 自适应免疫优化 METROPOLIS准则 阈值因子 粒子退化 粒子枯竭
下载PDF
基于自适应免疫粒子群优化算法的配电网状态估计 被引量:1
2
作者 王宽 陈晖 陈佑健 《福建电力与电工》 2008年第1期21-24,共4页
针对配电网中分布式发电机等设备的非线性特性和配电网量测配置特点,结合粒子群优化算法(PSO)的特点,提出了采用自适应免疫PSO算法进行配电网状态估计的思路。该算法引入免疫系统的免疫信息处理机制和自动调整动量系数的自适应因子的粒... 针对配电网中分布式发电机等设备的非线性特性和配电网量测配置特点,结合粒子群优化算法(PSO)的特点,提出了采用自适应免疫PSO算法进行配电网状态估计的思路。该算法引入免疫系统的免疫信息处理机制和自动调整动量系数的自适应因子的粒子群算法,解决了配电网状态估计中的非线性问题,克服了基本PSO算法容易陷入局部最优解的缺点,不仅增强了全局搜索能力,而且获得了理想的收敛速度和精度。算例证实了该算法的有效性,与基本粒子群算法的比较,显示了其优越性。 展开更多
关键词 配电网 状态估计 自适应免疫粒子群优化算法
下载PDF
Modified Self-adaptive Immune Genetic Algorithm for Optimization of Combustion Side Reaction of p-Xylene Oxidation 被引量:1
3
作者 陶莉莉 孔祥东 +1 位作者 钟伟民 钱锋 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第6期1047-1052,共6页
In recent years, immune genetic algorithm (IGA) is gaining popularity for finding the optimal solution for non-linear optimization problems in many engineering applications. However, IGA with deterministic mutation fa... In recent years, immune genetic algorithm (IGA) is gaining popularity for finding the optimal solution for non-linear optimization problems in many engineering applications. However, IGA with deterministic mutation factor suffers from the problem of premature convergence. In this study, a modified self-adaptive immune genetic algorithm (MSIGA) with two memory bases, in which immune concepts are applied to determine the mutation parameters, is proposed to improve the searching ability of the algorithm and maintain population diversity. Performance comparisons with other well-known population-based iterative algorithms show that the proposed method converges quickly to the global optimum and overcomes premature problem. This algorithm is applied to optimize a feed forward neural network to measure the content of products in the combustion side reaction of p-xylene oxidation, and satisfactory results are obtained. 展开更多
关键词 self-adaptive immune genetic algorithm artificial neural network measurement p-xylene oxidation process
下载PDF
Self-adaptive learning based immune algorithm 被引量:1
4
作者 许斌 庄毅 +1 位作者 薛羽 王洲 《Journal of Central South University》 SCIE EI CAS 2012年第4期1021-1031,共11页
A self-adaptive learning based immune algorithm (SALIA) is proposed to tackle diverse optimization problems, such as complex multi-modal and ill-conditioned prc,blems with the high robustness. The SALIA algorithm ad... A self-adaptive learning based immune algorithm (SALIA) is proposed to tackle diverse optimization problems, such as complex multi-modal and ill-conditioned prc,blems with the high robustness. The SALIA algorithm adopted a mutation strategy pool which consists of four effective mutation strategies to generate new antibodies. A self-adaptive learning framework is implemented to select the mutation strategies by learning from their previous performances in generating promising solutions. Twenty-six state-of-the-art optimization problems with different characteristics, such as uni-modality, multi-modality, rotation, ill-condition, mis-scale and noise, are used to verify the validity of SALIA. Experimental results show that the novel algorithm SALIA achieves a higher universality and robustness than clonal selection algorithms (CLONALG), and the mean error index of each test function in SALIA decreases by a factor of at least 1.0×10^7 in average. 展开更多
关键词 immune algorithm multi-modal optimization evolutionary computation immtme secondary response self-adaptivelearning
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部