期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于深度学习的输电线路工程车辆入侵检测 被引量:10
1
作者 闫春江 王闯 +4 位作者 方华林 王毅轩 杜觉晓 项学智 郭鑫立 《信息技术》 2018年第7期28-33,38,共7页
针对输电线路周边工程机械外力入侵的自动检测问题,提出了一种基于深度学习的工程车辆入侵检测方法,首先通过入侵检测的方式,提取出疑似入侵目标区域,再将疑似入侵区域送入训练好的深度卷积神经网络分类器之中进行目标判断,通过将卷积... 针对输电线路周边工程机械外力入侵的自动检测问题,提出了一种基于深度学习的工程车辆入侵检测方法,首先通过入侵检测的方式,提取出疑似入侵目标区域,再将疑似入侵区域送入训练好的深度卷积神经网络分类器之中进行目标判断,通过将卷积神经网络与入侵检测算法相结合,能够对输电线路周边的工程车辆入侵进行准确检测。实验表明,所提出的方法检测准确率达到97.2%。 展开更多
关键词 入侵检测 自适应前景分割 深度学习 卷积神经网络 VGGNet-16
下载PDF
Adaptive foreground and shadow segmentation using hidden conditional random fields 被引量:1
2
作者 CHU Yi-ping YE Xiu-zi +2 位作者 QIAN Jiang ZHANG Yin ZHANG San-yuan 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第4期586-592,共7页
Video object segmentation is important for video surveillance, object tracking, video object recognition and video editing. An adaptive video segmentation algorithm based on hidden conditional random fields (HCRFs) is... Video object segmentation is important for video surveillance, object tracking, video object recognition and video editing. An adaptive video segmentation algorithm based on hidden conditional random fields (HCRFs) is proposed, which models spatio-temporal constraints of video sequence. In order to improve the segmentation quality, the weights of spatio-temporal con- straints are adaptively updated by on-line learning for HCRFs. Shadows are the factors affecting segmentation quality. To separate foreground objects from the shadows they cast, linear transform for Gaussian distribution of the background is adopted to model the shadow. The experimental results demonstrated that the error ratio of our algorithm is reduced by 23% and 19% respectively, compared with the Gaussian mixture model (GMM) and spatio-temporal Markov random fields (MRFs). 展开更多
关键词 Video segmentation Shadow elimination Hidden conditional random fields (HCRFs) On-line learning
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部