时域方法在地震同相轴倾斜或弯曲时,难以保证去噪的有效性;频域方法在信号频带较宽时,会衰减过多信号。基于此,提出一种时域与频域自适应奇异值分解(singular value decomposition,SVD)融合去噪算法。该算法包含分解与融合技术:在分解...时域方法在地震同相轴倾斜或弯曲时,难以保证去噪的有效性;频域方法在信号频带较宽时,会衰减过多信号。基于此,提出一种时域与频域自适应奇异值分解(singular value decomposition,SVD)融合去噪算法。该算法包含分解与融合技术:在分解技术中,根据奇异值二阶差分谱,在时域与频域中分别进行自适应去噪,得到两个分解矩阵;在融合技术中,提出了用于评估分解矩阵的一致度,利用融合策略得到融合矩阵,最后根据局部相似性调整得到去噪矩阵。在合成与野外数据集上与一些算法进行了对比实验,结果表明,所提算法能够更有效地压制噪声。展开更多
文摘时域方法在地震同相轴倾斜或弯曲时,难以保证去噪的有效性;频域方法在信号频带较宽时,会衰减过多信号。基于此,提出一种时域与频域自适应奇异值分解(singular value decomposition,SVD)融合去噪算法。该算法包含分解与融合技术:在分解技术中,根据奇异值二阶差分谱,在时域与频域中分别进行自适应去噪,得到两个分解矩阵;在融合技术中,提出了用于评估分解矩阵的一致度,利用融合策略得到融合矩阵,最后根据局部相似性调整得到去噪矩阵。在合成与野外数据集上与一些算法进行了对比实验,结果表明,所提算法能够更有效地压制噪声。