期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
分块自适应加权改进大规模模糊聚类 被引量:1
1
作者 田彦彦 孙静 《机械设计与制造》 北大核心 2021年第9期279-282,共4页
为解决传统模糊C均值聚类(Fuzzy C-means,FCM)算法在处理大规模数据集时遇到的时间复杂和内存不足等瓶颈,提出基于大数据集抽样分块的多视角自适应模糊聚类算法,算法通过邻域正则约束提高传统FCM算法的抗噪性,通过低秩与熵加权约束提高... 为解决传统模糊C均值聚类(Fuzzy C-means,FCM)算法在处理大规模数据集时遇到的时间复杂和内存不足等瓶颈,提出基于大数据集抽样分块的多视角自适应模糊聚类算法,算法通过邻域正则约束提高传统FCM算法的抗噪性,通过低秩与熵加权约束提高多视角一致性,以提高算法对多样化数据聚类的适应性,最后通过Canopy算法初始聚类中心提取、数据抽样分块和自适应加权优化算法对大规模数据聚类的适应性。实验结果表明,算法在继承传统多视角FCM算法良好聚类性能基础上,减少了计算复杂度,提高了聚类准确率,适于大规模数据集聚类。 展开更多
关键词 大规模数据 邻域正则约束 多视角一致 数据抽样分块 自适应加权聚类
下载PDF
加权空-谱自适应近邻聚类的高光谱图像分类 被引量:2
2
作者 何芳 王标标 +2 位作者 张峰干 郭帅 贾维敏 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2017年第12期1604-1609,共6页
高光谱图像聚类算法可以对海量的高光谱图像数据进行信息提取,完成地物类别的初步分类。自适应近邻聚类(clustering with adaptive neighbors,CAN)作为一种新型的聚类算法,利用样本间的局部连通性实现聚类,聚类效果较好,但是该算法的性... 高光谱图像聚类算法可以对海量的高光谱图像数据进行信息提取,完成地物类别的初步分类。自适应近邻聚类(clustering with adaptive neighbors,CAN)作为一种新型的聚类算法,利用样本间的局部连通性实现聚类,聚类效果较好,但是该算法的性能受样本间相关性的影响较大。基于此,文章提出了一种新的融合高光谱图像的空间信息和光谱信息的分类方法,即加权空-谱自适应近邻聚类(weighted spatial and spectral clustering with adaptive neighbors,WSS-CAN)法,该方法通过引入样本点的近邻窗口尺度和光谱因子2个参数对高光谱图像进行重构,增强了样本间的相关性,对重构后的图像进行CAN聚类,有效提高了分类精度。在Indian Pines和Salinas-A数据库上的实验结果表明,由WSS-CAN得到的总体精度分别为56.33%、77.90%,分别比其他聚类算法提升了11.52%~18.47%、10.1%~14.79%,聚类效果较好。 展开更多
关键词 算法 自适应近邻 空间信息 光谱信息 加权空-谱自适应近邻 高光谱图像分
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部