针对ORB(oriented FAST and rotated BRIEF)特征匹配算法在实时性要求较高领域效果不佳以及在复杂光照环境下匹配精确率较低的问题,提出了一种基于改进FAST(features from accelerated segment test)检测的ORB算法。首先,对待处理的灰...针对ORB(oriented FAST and rotated BRIEF)特征匹配算法在实时性要求较高领域效果不佳以及在复杂光照环境下匹配精确率较低的问题,提出了一种基于改进FAST(features from accelerated segment test)检测的ORB算法。首先,对待处理的灰度图像进行分类,剔除掉部分灰度变化率较低的区域,然后提取FAST特征点并计算描述子,最后采用汉明距离完成匹配。此外,在提取FAST特征点时,设计了一种自适应半径,利用图像对比度自适应调整检测半径,当图像对比度突变时依然能够保证期望的特征点数量。实验结果表明,改进后的ORB算法匹配时间缩短了16.47%,大幅提高了在复杂光照环境下的匹配精确率,具有较强的鲁棒性和实时性。展开更多
提出了一种基于自适应半径免疫算法(ARIA)的入侵检测方法。ARIA训练得到的抗体网络充分保留了原始数据的密度分布信息,具有准确的空间形态;再用最小生成树算法和Zahn划分标准对抗体网络细胞聚类,聚类得到的簇被标记为正常或异常并用于...提出了一种基于自适应半径免疫算法(ARIA)的入侵检测方法。ARIA训练得到的抗体网络充分保留了原始数据的密度分布信息,具有准确的空间形态;再用最小生成树算法和Zahn划分标准对抗体网络细胞聚类,聚类得到的簇被标记为正常或异常并用于网络异常检测中。对KDD CUP 99数据集的实验结果表明:相对于基于aiNet的入侵检测方法,新的算法检测率高、误报率低,能够有效识别KDD中的已知攻击和未知攻击。展开更多
There exists a Ghost region in the detection result of the traditional visual background extraction(ViBe)algorithm,and the foreground extraction is prone to false detection or missed detection due to environmental cha...There exists a Ghost region in the detection result of the traditional visual background extraction(ViBe)algorithm,and the foreground extraction is prone to false detection or missed detection due to environmental changes.Therefore,an improved ViBe algorithm based on adaptive detection of moving targets was proposed.Firstly,in the background model initialization process,the real background could be obtained by setting adjusting parameters in mean background modeling,and the ViBe background model was initialized by using the background.Secondly,in the foreground detection process,an adaptive radius threshold was introduced according to the scene change to adaptively detect the foreground.Finally,mathematical morphological close operation was used to fill the holes in the detection results.The experimental results show that the improved method can effectively suppress the Ghost region and detect the foreground target more completely under the condition of environmental changes.Compared with the traditional ViBe algorithm,the detection accuracy is improved by more than 10%,the false detection rate and the missed detection rate are reduced by 20% and 7% respectively.In addition,the improved method satisfies the real-time requirements.展开更多
文摘针对ORB(oriented FAST and rotated BRIEF)特征匹配算法在实时性要求较高领域效果不佳以及在复杂光照环境下匹配精确率较低的问题,提出了一种基于改进FAST(features from accelerated segment test)检测的ORB算法。首先,对待处理的灰度图像进行分类,剔除掉部分灰度变化率较低的区域,然后提取FAST特征点并计算描述子,最后采用汉明距离完成匹配。此外,在提取FAST特征点时,设计了一种自适应半径,利用图像对比度自适应调整检测半径,当图像对比度突变时依然能够保证期望的特征点数量。实验结果表明,改进后的ORB算法匹配时间缩短了16.47%,大幅提高了在复杂光照环境下的匹配精确率,具有较强的鲁棒性和实时性。
文摘提出了一种基于自适应半径免疫算法(ARIA)的入侵检测方法。ARIA训练得到的抗体网络充分保留了原始数据的密度分布信息,具有准确的空间形态;再用最小生成树算法和Zahn划分标准对抗体网络细胞聚类,聚类得到的簇被标记为正常或异常并用于网络异常检测中。对KDD CUP 99数据集的实验结果表明:相对于基于aiNet的入侵检测方法,新的算法检测率高、误报率低,能够有效识别KDD中的已知攻击和未知攻击。
基金National Natural Science Foundation of China(No.61761027)Postgraduate Education Reform Project of Lanzhou Jiaotong University(No.1600120101)。
文摘There exists a Ghost region in the detection result of the traditional visual background extraction(ViBe)algorithm,and the foreground extraction is prone to false detection or missed detection due to environmental changes.Therefore,an improved ViBe algorithm based on adaptive detection of moving targets was proposed.Firstly,in the background model initialization process,the real background could be obtained by setting adjusting parameters in mean background modeling,and the ViBe background model was initialized by using the background.Secondly,in the foreground detection process,an adaptive radius threshold was introduced according to the scene change to adaptively detect the foreground.Finally,mathematical morphological close operation was used to fill the holes in the detection results.The experimental results show that the improved method can effectively suppress the Ghost region and detect the foreground target more completely under the condition of environmental changes.Compared with the traditional ViBe algorithm,the detection accuracy is improved by more than 10%,the false detection rate and the missed detection rate are reduced by 20% and 7% respectively.In addition,the improved method satisfies the real-time requirements.