采用多可控串联补偿器(thyristor controlled series compensation,TCSC)联合运行可提高线路功率传输能力,但多TCSC联合运行时所存在的交互影响可能导致系统暂态稳定性下降。设计一种新的自适应控制方案,动态自适应调整多个TCSC联合运...采用多可控串联补偿器(thyristor controlled series compensation,TCSC)联合运行可提高线路功率传输能力,但多TCSC联合运行时所存在的交互影响可能导致系统暂态稳定性下降。设计一种新的自适应控制方案,动态自适应调整多个TCSC联合运行时的参数,以规避多TCSC的负交互影响。利用能量函数分析多TCSC协调控制规律,然后通过微分观测器引入微分信号,再将专家控制和神经网络引入自适应控制,动态调整PID(proportion integral differential)参数。通过在一个装设2台TCSC的4机2区域系统的仿真验证,并和PI控制、BP-PI控制进行对比,结果表明,所设计的自适应控制器在提高系统暂态稳定性方面,具有一定的优越性。展开更多
A modified harmony search algorithm with co-evolutional control parameters(DEHS), applied through differential evolution optimization, is proposed. In DEHS, two control parameters, i.e., harmony memory considering rat...A modified harmony search algorithm with co-evolutional control parameters(DEHS), applied through differential evolution optimization, is proposed. In DEHS, two control parameters, i.e., harmony memory considering rate and pitch adjusting rate, are encoded as a symbiotic individual of an original individual(i.e., harmony vector). Harmony search operators are applied to evolving the original population. DE is applied to co-evolving the symbiotic population based on feedback information from the original population. Thus, with the evolution of the original population in DEHS, the symbiotic population is dynamically and self-adaptively adjusted, and real-time optimum control parameters are obtained. The proposed DEHS algorithm has been applied to various benchmark functions and two typical dynamic optimization problems. The experimental results show that the performance of the proposed algorithm is better than that of other HS variants. Satisfactory results are obtained in the application.展开更多
文摘采用多可控串联补偿器(thyristor controlled series compensation,TCSC)联合运行可提高线路功率传输能力,但多TCSC联合运行时所存在的交互影响可能导致系统暂态稳定性下降。设计一种新的自适应控制方案,动态自适应调整多个TCSC联合运行时的参数,以规避多TCSC的负交互影响。利用能量函数分析多TCSC协调控制规律,然后通过微分观测器引入微分信号,再将专家控制和神经网络引入自适应控制,动态调整PID(proportion integral differential)参数。通过在一个装设2台TCSC的4机2区域系统的仿真验证,并和PI控制、BP-PI控制进行对比,结果表明,所设计的自适应控制器在提高系统暂态稳定性方面,具有一定的优越性。
基金Project(2013CB733605)supported by the National Basic Research Program of ChinaProject(21176073)supported by the National Natural Science Foundation of China
文摘A modified harmony search algorithm with co-evolutional control parameters(DEHS), applied through differential evolution optimization, is proposed. In DEHS, two control parameters, i.e., harmony memory considering rate and pitch adjusting rate, are encoded as a symbiotic individual of an original individual(i.e., harmony vector). Harmony search operators are applied to evolving the original population. DE is applied to co-evolving the symbiotic population based on feedback information from the original population. Thus, with the evolution of the original population in DEHS, the symbiotic population is dynamically and self-adaptively adjusted, and real-time optimum control parameters are obtained. The proposed DEHS algorithm has been applied to various benchmark functions and two typical dynamic optimization problems. The experimental results show that the performance of the proposed algorithm is better than that of other HS variants. Satisfactory results are obtained in the application.